James–Stein confidence sets: equal area approach in the global approximation for the coverage probability
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 132-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In paper [Ahmed S. E., Saleh A. K. MD. E., Volodin A. I., Volodin I. N. Asymptotic expansion of the coverage probability of James–Stein estimators // Theory Probab. Appl. – 2007. – V. 51. – P. 683–695] an asymptotic expansion of the coverage probabilities for the James–Stein confidence sets was constructed, which is accurate both for large and small values of the noncentrality parameter $\tau^2$ – the sum of the squares of the means of $p\geq3$ normal distributions. As numerical illustrations show, the expansion might be used almost in the entire area of the values of $\tau^2$ with the error of the order $10^{-2}$. In the present article a similar asymptotic expansion is suggested, whose global error is significantly less in the area of small and moderate values of $p$. The accuracy of the obtained results is shown by the Monte-Carlo statistical simulations.
Keywords: confidence sets, positive-part James–Stein estimator, multivariate normal distribution, coverage probability, asymptotic expansion.
@article{UZKU_2010_152_1_a12,
     author = {I. N. Volodin and I. A. Kareev},
     title = {James{\textendash}Stein confidence sets: equal area approach in the global approximation for the coverage probability},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {132--141},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a12/}
}
TY  - JOUR
AU  - I. N. Volodin
AU  - I. A. Kareev
TI  - James–Stein confidence sets: equal area approach in the global approximation for the coverage probability
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 132
EP  - 141
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a12/
LA  - ru
ID  - UZKU_2010_152_1_a12
ER  - 
%0 Journal Article
%A I. N. Volodin
%A I. A. Kareev
%T James–Stein confidence sets: equal area approach in the global approximation for the coverage probability
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 132-141
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a12/
%G ru
%F UZKU_2010_152_1_a12
I. N. Volodin; I. A. Kareev. James–Stein confidence sets: equal area approach in the global approximation for the coverage probability. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 132-141. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a12/

[1] Stein C., “Confidence sets for the mean of a multivariate normal distribution”, J. Roy. Statist. Soc. Ser. B, 24 (1962), 265–296 | MR | Zbl

[2] Ahmed S. E., Saleh A. K. MD. E., Volodin A. I., Volodin I. N., “Asymptotic expansion of the coverage probability of James–Stein estimators”, Theory Probab. Appl., 51 (2007), 683–695 | DOI | MR | Zbl

[3] Hwang J. T., Casella G., “Minimax confidence sets for the mean of a multivariate normal distribution”, Ann. Statist., 10 (1982), 868–881 | DOI | MR | Zbl

[4] Ahmed S. E., Volodin A. I., Volodin I. N., “High order approximation for the coverage probability by a confident set centered at the positive-part James–Stein estimator”, Statist. Probab. Lett., 79 (2009), 1823–1828 | DOI | MR | Zbl

[5] Budsaba K., Kareev I. A., Volodin A. I., Volodin I. N., “Confidence sets with the asymptotically constant coverage probability based on the positive part James–Stein estimator” (to appear)

[6] Lehmann E. L., Casella G., Theory of Point Estimation, Springer-Verlag, N.Y., 1998, 589 pp. | MR