An extension of the Krein–Šmulian and Lozanovskii theorems to the case of metrizable spaces with a cone
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 126-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Krein–Šmulian theorem and a Lozanovskii result on automatical continuity of positive linear operators are extended to the case of complete metrizable topological vector spaces.
Keywords: metrizable topological vector spaces, cone, positive linear operator, Krein–Šmulian theorem.
@article{UZKU_2010_152_1_a11,
     author = {L. V. Veselova and O. E. Tikhonov},
     title = {An extension of the {Krein{\textendash}\v{S}mulian} and {Lozanovskii} theorems to the case of metrizable spaces with a~cone},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {126--131},
     year = {2010},
     volume = {152},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a11/}
}
TY  - JOUR
AU  - L. V. Veselova
AU  - O. E. Tikhonov
TI  - An extension of the Krein–Šmulian and Lozanovskii theorems to the case of metrizable spaces with a cone
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2010
SP  - 126
EP  - 131
VL  - 152
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a11/
LA  - ru
ID  - UZKU_2010_152_1_a11
ER  - 
%0 Journal Article
%A L. V. Veselova
%A O. E. Tikhonov
%T An extension of the Krein–Šmulian and Lozanovskii theorems to the case of metrizable spaces with a cone
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2010
%P 126-131
%V 152
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a11/
%G ru
%F UZKU_2010_152_1_a11
L. V. Veselova; O. E. Tikhonov. An extension of the Krein–Šmulian and Lozanovskii theorems to the case of metrizable spaces with a cone. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 152 (2010) no. 1, pp. 126-131. http://geodesic.mathdoc.fr/item/UZKU_2010_152_1_a11/

[1] Zabreiko P. P., “Ob odnoi teoreme dlya poluadditivnykh funktsionalov”, Funkts. analiz i ego prilozh., 3:1 (1969), 86–88 | MR | Zbl

[2] Sherstnev A. N., Konspekt lektsii po matematicheskomu analizu, Kazan. gos. un-t, Kazan, 2005, 374 pp. | MR

[3] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[4] Rolewicz S., Metric linear spaces, PWN, Warszawa, 1972, 287 pp. | MR | Zbl

[5] Veselova L. V., Tikhonov O. E., Obobschenie teoremy M. Kreina–Shmulyana na sluchai metrizuemykh prostranstv s konusom, Preprint 0003-2006, NIIMM KGU, Kazan, 2006 http://www.niimm.ksu.ru/data/preprints/thepreprints/0003-2006.pdf

[6] Abramovich Y. A., Aliprantis C. D., “Positive operators”, Handbook of the Geometry of Banach Spaces, v. 1, Elsevier, Amsterdam, 2001, 85–122 | DOI | MR | Zbl

[7] Abramovich Y. A., Aliprantis C. D., Burkinshaw O., “Positive operators on Krein spaces”, Acta Appl. Math., 27 (1992), 1–22 | DOI | MR | Zbl

[8] Vulikh B. Z., Spetsialnye voprosy geometrii konusov v normirovannykh prostranstvakh, Kalin. gos. un-t, Kalinin, 1978, 84 pp.

[9] Krasnoselskii M. A., Lifshits E. A., Sobolev A. V., Pozitivnye lineinye sistemy: metod polozhitelnykh operatorov, Nauka, M., 1985, 255 pp. | MR | Zbl

[10] Lifshits E. A., “Idealno vypuklye mnozhestva”, Funkts. analiz i ego pril., 4:4 (1970), 76–77 | MR | Zbl

[11] Trunov N. V., Sherstnev A. N., “Vvedenie v teoriyu nekommutativnogo integrirovaniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Nov. dostizh., 27, VINITI, M., 1985, 167–190 | MR | Zbl

[12] Sherstnev A. N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008, 264 pp. | Zbl