The Great Heritage of Sophus Lie
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 72-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, we describe the floors $T^kM$, sector-bundles, and the theory of sector forms according to J. T. White. Using iterations of the tangent functor $T$, we construct tangent groups $T^kG$. Using the Lie–Cartan calculus, we study invariants of the group operators, their transformations under symmetries and stability.
Mots-clés : jets, tangent group
Keywords: tangent functor, floor, stability of invariants.
@article{UZKU_2009_151_4_a7,
     author = {M. Rahula},
     title = {The {Great} {Heritage} of {Sophus} {Lie}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {72--92},
     year = {2009},
     volume = {151},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a7/}
}
TY  - JOUR
AU  - M. Rahula
TI  - The Great Heritage of Sophus Lie
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 72
EP  - 92
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a7/
LA  - ru
ID  - UZKU_2009_151_4_a7
ER  - 
%0 Journal Article
%A M. Rahula
%T The Great Heritage of Sophus Lie
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 72-92
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a7/
%G ru
%F UZKU_2009_151_4_a7
M. Rahula. The Great Heritage of Sophus Lie. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 72-92. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a7/

[1] Poincaré H., Dernières pensées, Ernest Flammarion, Paris, 1913

[2] Ivey T. A., Landsberg J. M., Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems, Amer. Math. Soc., Providence, RI, 2003, 378 pp. | MR | Zbl

[3] Finikov S. P., Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948, 432 pp. | MR

[4] Lie S., Engel F., Theorie der Transformationsgruppen, V. 3, Teubner, Leipzig, 1888 | Zbl

[5] Weyl H., The Classical Groups. Their Invariants and Representations, Princeton Univ. Press, Princeton, NJ, 1939, 314 pp. | MR

[6] Abraham R., Marsden J. E., Foundations of Mechanics, Benjamin/Cummings Publ. Comp., Reading, MA, 1978, 806 pp. | MR | Zbl

[7] Atanasiu G., Balan V., Brynzei N., Rakhula M., Kasatelnye struktury, vektornye polya i dvizheniya, Iz-vo LKI, M., 2009, 592 pp.

[8] Bertram W., Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings, Amer. Math. Soc., Providence, RI, 2008, 211 pp. | MR

[9] Godbillon C., Géométrie Différentielle et Mécanique Analitique, Hermann Publ., Paris, 1969, 184 pp. | MR | Zbl

[10] Rahula M., New Problems in Differential Geometry, WSP, 1993, 172 pp. | MR

[11] White J. E., The Method of Iterated Tangents with Applications in Local Riemannian Geometry, Pitman Publ., Boston, Mass.–London, 1982, 272 pp. | MR | Zbl

[12] Yano K., Ishihara S., Tangent and Cotangent Bundles, Marcel Dekker Inc., N.Y., 1973, 423 pp. | MR | Zbl

[13] Vagner V. V., “Teoriya differentsialnykh ob'ektov i osnovy differentsialnoi geometrii”, Osnovaniya differentsialnoi geometrii, eds. Veblen O., Uaitkhed Dzh., Inostr. lit., M., 1949, 135–223

[14] Atanasiu G., Rakhula M., Novye aspekty differentsialnoi geometrii vtorogo poryadka. K teorii svyaznostei, Tartu Univ. Press, Tartu, 2007, 211 pp. | MR | Zbl

[15] Bröcker Th., Lander L., Differentiable Germs and Catastrophes, Cambridge. Univ. Press, Cambridge, 1975, 179 pp. ; Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977, 208 pp. | MR | Zbl

[16] Rahula M., “Les invariants des mouvements”, Balkan Society of Geometry Proc., 14 (2007), 145–153 | MR | Zbl