On Reduction of Monge–Ampére Equation to Euler–Poisson Equation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 60-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We solve the problem of local contact equivalence of Monge–Ampére equation to Euler–Poisson equation.
Mots-clés : contact transformations
Keywords: Laplace forms.
@article{UZKU_2009_151_4_a6,
     author = {A. G. Kushner},
     title = {On {Reduction} of {Monge{\textendash}Amp\'ere} {Equation} to {Euler{\textendash}Poisson} {Equation}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {60--71},
     year = {2009},
     volume = {151},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a6/}
}
TY  - JOUR
AU  - A. G. Kushner
TI  - On Reduction of Monge–Ampére Equation to Euler–Poisson Equation
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 60
EP  - 71
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a6/
LA  - ru
ID  - UZKU_2009_151_4_a6
ER  - 
%0 Journal Article
%A A. G. Kushner
%T On Reduction of Monge–Ampére Equation to Euler–Poisson Equation
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 60-71
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a6/
%G ru
%F UZKU_2009_151_4_a6
A. G. Kushner. On Reduction of Monge–Ampére Equation to Euler–Poisson Equation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 60-71. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a6/

[1] Lie S., “Ueber einige partielle Differential-Gleichungen zweiter Orduung”, Math. Ann., 5 (1872), 209–256 | DOI | MR

[2] Lie S., “Begrundung einer Invarianten-Theorie der Beruhrungs-Transformationen”, Math. Ann., 8 (1874), 215–303 | DOI | MR

[3] Lie S., “Classification und integration von gewöhnlichen differentialgleichungen zwischen $x,y$, die eine Gruppe von Transformationen gestatten”, Math. Ann., 32 (1888), 213–281 | DOI | MR

[4] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya v chastnykh proizvodnykh vtorogo poryadka”, Dokl. AN SSSR, 238:5 (1978), 273–276 | Zbl

[5] Vinogradov A. M., Krasilschik I. S., Lychagin V. V., Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986, 336 pp. | MR

[6] Lychagin V. V., Rubtsov V. N., “O teoremakh Sofusa Li dlya uravnenii Monzha–Ampera”, Dokl. AN BSSR, 27:5 (1983), 396–398 | MR | Zbl

[7] Tunitskii D. V., “O kontaktnoi linearizatsii uravnenii Monzha–Ampera”, Izv. RAN. Ser. matem., 60:2 (1996), 195–220 | DOI | MR | Zbl

[8] Kruglikov B. S., “O nekotorykh klassifikatsionnykh zadachakh v chetyrekhmernoi geometrii: raspredeleniya, pochti kompleksnye struktury i obobschennye uravneniya Monzha–Ampera”, Matem. sb., 189:11 (1998), 61–74 | DOI | MR | Zbl

[9] Kushner A. G., “Uravneniya Monzha–Ampera i $e$-struktury”, Dokl. RAN, 361:5 (1998), 595–596 | MR | Zbl

[10] Kushner A. G., “Symplectic geometry of mixed type equations”, The Interplay beetween Differential Geometry and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 167, ed. Lychagin V. V., 1995, 131–142 | MR | Zbl

[11] Kushner A. G., “Kontaktnaya linearizatsiya nevyrozhdennykh uravnenii Monzha–Ampera”, Izv. vuzov. Matem., 2008, no. 4, 43–58 | MR | Zbl

[12] Kushner A. G., “Kontaktnaya linearizatsiya uravnenii Monzha–Ampera i invarianty Laplasa”, Dokl. RAN, 422:5 (2008), 597–600 | MR | Zbl

[13] Kushner A. G., “A contact linearization problem for Monge–Ampère equations and Laplace invariants”, Acta Appl. Math., 101:1–3 (2008), 177–189 | DOI | MR | Zbl

[14] Kushner A. G., “Normalnye formy Chaplygina i Keldysha uravnenii Monzha–Ampera”, Matem. zametki, 52:5 (1992), 63–67 | MR | Zbl

[15] Kushner A. G., “Privedenie giperbolicheskikh uravnenii Monzha–Ampera k lineinym uravneniyam s postoyannymi koeffitsientami”, Dokl. RAN, 423:5 (2008), 609–611 | MR | Zbl

[16] Kushner A. G., “Normalnye formy dlya uravnenii Monzha–Ampera: telegrafnoe uravnenie i uravnenie Gelmgoltsa”, Geometriya, topologiya ta ïkh zastosuvanya. Zbirnik Prats In-tu matematiki NAN Ukraini, 6:2 (2009), 91–122 | MR | Zbl

[17] Kushner A. G., Manzhosova E. N., “Simplekticheskaya klassifikatsiya giperbolicheskikh uravnenii Monzha–Ampera”, Proceedings of the International Geometry Center, 1:1–2 (2008), 41–70

[18] Kushner A. G., “On contact equivalence of Monge–Ampere equations to linear equations with constant coefficients”, Acta Appl. Math., 2009 | DOI

[19] Laplace P. S., “Recherches sur le calcul intégrals aux différences partielles”, Mémoires de l'Académie royale des Sciences de Paris, 23(24) (1773), 341–402

[20] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR | Zbl

[21] Kushner A. G., “Classification of Monge–Ampère equations”, Differential Equations: Geometry, Symmetries and Integrability, Proceedings of the Fifth Abel Symposium (Tromso, Norway, June 17–22, 2008), eds. B. Kruglikov, V. Lychagin, E. Straume, 2008, 223–256

[22] Kushner A. G., Lychagin V. V., Rubtsov V. N., Contact geometry and nonlinear differential equations, Cambridge Univ. Press, Cambridge, 2007, xxii+496 pp. | Zbl

[23] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya v chastnykh proizvodnykh vtorogo poryadka”, Usp. matem. nuak, 34:1 (1979), 137–165 | MR | Zbl

[24] Lychagin V. V., Lectures on geometry of differential equations, V. 1, 2, La Sapienza, Rome, 1993

[25] Morozov O. I., Contact equivalence of the generalized Hunter-Saxton equation and the Euler–Poisson equation, Preprint , 2004, 3 pp. arxiv: org.math-ph/0406016

[26] Hunter J. K., Saxton R., “Dynamics of director fields”, SIAM J. Appl. Math., 51:6 (1991), 1498–1521 | DOI | MR | Zbl