On the Geometry of Submanifolds in $E^n_{2n}$
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 215-230
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A special class of $2m$-dimensional submanifolds in a $2n$-dimensional pseudo-Euclidean space with metric of signature $(n,n)$, known as a pseudo-Euclidean Rashevsky space, is studied. For such submanifolds, canonical integrals and parametric equations are found.
Keywords: even-dimensional submanifolds, pseudo-Euclidean Rashevsky space, double fiber bundle, canonical integral, differential-geometric structure, fibration
Mots-clés : foliation.
@article{UZKU_2009_151_4_a19,
     author = {S. Haroutunian},
     title = {On the {Geometry} of {Submanifolds} in $E^n_{2n}$},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {215--230},
     year = {2009},
     volume = {151},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a19/}
}
TY  - JOUR
AU  - S. Haroutunian
TI  - On the Geometry of Submanifolds in $E^n_{2n}$
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 215
EP  - 230
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a19/
LA  - en
ID  - UZKU_2009_151_4_a19
ER  - 
%0 Journal Article
%A S. Haroutunian
%T On the Geometry of Submanifolds in $E^n_{2n}$
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 215-230
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a19/
%G en
%F UZKU_2009_151_4_a19
S. Haroutunian. On the Geometry of Submanifolds in $E^n_{2n}$. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 215-230. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a19/

[1] Vasilyev A. M., Theory of differential-geometric structures, Moscow State Univ. Press, M., 1987, 190 pp. (Russian) | MR

[2] Cartan E., Les espaces métriques fondés sur la notion d'aire, Paris, 1933

[3] Kawaguchi A., “Theory of connections in the generalized Finsler manifold”, Proc. Imp. Acad Tokyo, 7 (1937), 211–214 | DOI | MR

[4] Kawaguchi A., “Geometry in an $n$-dimensional space with length $s=\int(A_i(x,x')x''^i+\dots+B(x,x'))\,dt$”, Trans. Amer. Math. Soc., 44 (1938), 153–167 | DOI | MR | Zbl

[5] Shirokov P. A., “Constant fields of vectors and tensors in Riemannian spaces”, Proc. Kazan Phys. Math. Soc., 2:25 (1925), 86–114 (Russian)

[6] Kähler E., “Über eine bemerkenswerte Hermitesche Metrik”, Abh. Math. Sem. Univ. Hamburg, 9 (1933), 173–186 | DOI

[7] Rashevsky P. C., “Scalar field in the fiber bundle space”, Reports of the Sem. on Vector and Tensor Analysis, 6, Moscow State Univ. Press, M., 1949, 225–248 (Russian)

[8] Vishnevsky V. V., “About parabolic analogue of $A$-spaces”, Izv. Vuz. Matematika, 1968, no. 1, 29–38 (Russian) | MR | Zbl

[9] Haroutunian S., “Geometry of $n$ multiple integrals depending on $n$ parameters”, Itogi Nauki i Tekhniki. Problems of Geometry, 22, VINITI Acad. Sci. USSR, M., 1990, 37–58 (Russian) | MR | Zbl

[10] Haroutunian S., “On some classes of differential-geometric structures on submanifolds of pseudoeuclidean space $E^{n+1}_{2(n+1)}$”, Izv. Vuz. Matematika, 1989, no. 10, 3–11 (Russian) | MR | Zbl

[11] Haroutunian S., “On some classes of submanifolds of codimension two in pseudoeuclidean space $E^{n+1}_{2(n+1)}$”, Izv. Vuz. Matematika, 1990, no. 3, 3–11 (Russian) | MR | Zbl

[12] Haroutunian S., “Geometry of submanifolds with structure of double fiber bundle in Rashevsky pseudoeuclidean space”, Izv. Vuz. Matematika, 2005, no. 5, 33–40 (Russian)

[13] Haroutunian S., “On geometry of one class of submanifolds in $E^n_{2n}$”, Tensor (N.S.), 66:3 (2005), 229–244 | MR | Zbl

[14] Laptev G. F., “Differential geometry of immersed manifolds”, Mosc. Math. Soc. Works, 2, 1953, 275–382 (Russian) | MR | Zbl