Lifts of Poisson–Nijenhuis Structures to Weil Bundles
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 203-214 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper we show that the complete lifts of the structure tensors $P$ and $N$ of a Poisson–Nijenhuis manifold $(M,P,N)$ to the Weil bundle $T^\mathbb AM$ induce a structure of Poisson–Nijenhuis manifold on $T^\mathbb AM$. We compute the modular vector fields of this manifold.
Keywords: Poisson–Nijenhuis manifold, modular class, Weil bundle, complete lift, vertical lift.
Mots-clés : Weil algebra
@article{UZKU_2009_151_4_a18,
     author = {V. V. Shurygin (jr.)},
     title = {Lifts of {Poisson{\textendash}Nijenhuis} {Structures} to {Weil} {Bundles}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {203--214},
     year = {2009},
     volume = {151},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a18/}
}
TY  - JOUR
AU  - V. V. Shurygin (jr.)
TI  - Lifts of Poisson–Nijenhuis Structures to Weil Bundles
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 203
EP  - 214
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a18/
LA  - ru
ID  - UZKU_2009_151_4_a18
ER  - 
%0 Journal Article
%A V. V. Shurygin (jr.)
%T Lifts of Poisson–Nijenhuis Structures to Weil Bundles
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 203-214
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a18/
%G ru
%F UZKU_2009_151_4_a18
V. V. Shurygin (jr.). Lifts of Poisson–Nijenhuis Structures to Weil Bundles. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 203-214. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a18/

[1] de Azcarraga J. A., Perelomov A. M., Perez Bueno J. C., “The Schouten–Nijenhuis bracket, cohomology and generalized Poisson structures”, J. Phys. A: Math. Gen., 29:24 (1996), 7993–8009 | DOI | MR | Zbl

[2] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer, 1993, 434 pp. | MR

[3] Vaisman I., Lectures on the Geometry of Poisson Manifolds, Progress in Math., 118, Birkhäuser, Basel, 1994, 205 pp. | MR | Zbl

[4] Kosmann-Schwarzbach Y., Magri F., “Poisson–Nijenhuis structures”, Ann. Inst. Poincaré Serie A, 53:1 (1990), 35–81 | MR | Zbl

[5] Damianou P. A., Fernandes R. L., Integrable hierarchies and the modular class, arxiv: math/0607784v2[math.DG] | MR

[6] Kosmann-Schwarzbach Y., Magri F., On the modular classes of Poisson–Nijenhuis manifolds, arxiv: math/0611202v1[math.SG]

[7] Shurygin V. V., “The structure of smooth mappings over Weil algebras and the category of manifolds over algebras”, Lobachevskii J. of Math., 5 (1999), 29–55 | MR | Zbl

[8] Shurygin V. V. (jr.), Lifts of Poisson structures to Weil bundles, arxiv: 0907.5560v1[math.DG] | MR

[9] Weinstein A., “The modular automorphism group of a Poisson manifold”, J. Geom. Phys., 23:3 (1997), 379–394 | DOI | MR | Zbl