Principal Directions of Hyperquadric of Parabolic Type in Hilbert Space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 197-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the finite dimensional case, a hypersurface $\Sigma$ in $(n+1)$-dimensional Euclidean space has $n$ principal directions: the eigenvectors of the Weingarten operator at a given point of $\Sigma$. The algorithm for finding the principal directions is well known for this case: one needs to find the roots of the characteristic polynomial $n$-th degree and to solve a system of linear equations. For the hypersurfaces of the infinite dimensional Hilbert space this algorithm fails. Moreover, it is possible that the Weingarten operator has no eigenvalues at all. In the present paper, we use another approach to the problem of finding principal directions of a hyperquadric of parabolic type. Given a local representation of an arbitrary nonzero vector, we explicitly find a point of the surface at which this vector has a principal direction.
Keywords: Hilbert space, Weingarten operator
Mots-clés : principal direction of hyperquadric.
@article{UZKU_2009_151_4_a17,
     author = {V. E. Fomin},
     title = {Principal {Directions} of {Hyperquadric} of {Parabolic} {Type} in {Hilbert} {Space}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {197--202},
     year = {2009},
     volume = {151},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a17/}
}
TY  - JOUR
AU  - V. E. Fomin
TI  - Principal Directions of Hyperquadric of Parabolic Type in Hilbert Space
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 197
EP  - 202
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a17/
LA  - ru
ID  - UZKU_2009_151_4_a17
ER  - 
%0 Journal Article
%A V. E. Fomin
%T Principal Directions of Hyperquadric of Parabolic Type in Hilbert Space
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 197-202
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a17/
%G ru
%F UZKU_2009_151_4_a17
V. E. Fomin. Principal Directions of Hyperquadric of Parabolic Type in Hilbert Space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 197-202. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a17/

[1] Fomin V. E., “O glavnykh napravleniyakh giperkvadriki v gilbertovom prostranstve”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 147, no. 1, 2005, 173–180 | Zbl

[2] Dëdonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 432 pp.

[3] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967, 204 pp.

[4] Torp Dzh., Nachalnye glavy differentsialnoi geometrii. Sovremennaya matematika. Vvodnye kursy, Mir, M., 1982, 360 pp. | MR