On a Class of Almost Contact Metric Manifolds of Maximal Mobility
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 192-196
Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
A special class of almost contact metric manifolds $M^{2n+1}(\eta,\xi,\Phi,g)$ of maximal mobility is studied. In terms of a special coordinate system, we calculate the components of the structure objects of $M^{2n+1}$ and find basis vector fields of the Lie algebra of infinitesimal automorphisms of $M^{2n+1}$.
Keywords:
almost contact metric manifold, Lie algebra, infinitesimal automorphism.
@article{UZKU_2009_151_4_a16,
author = {N. A. Tyapin},
title = {On {a~Class} of {Almost} {Contact} {Metric} {Manifolds} of {Maximal} {Mobility}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {192--196},
publisher = {mathdoc},
volume = {151},
number = {4},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a16/}
}
TY - JOUR AU - N. A. Tyapin TI - On a Class of Almost Contact Metric Manifolds of Maximal Mobility JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2009 SP - 192 EP - 196 VL - 151 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a16/ LA - ru ID - UZKU_2009_151_4_a16 ER -
%0 Journal Article %A N. A. Tyapin %T On a Class of Almost Contact Metric Manifolds of Maximal Mobility %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2009 %P 192-196 %V 151 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a16/ %G ru %F UZKU_2009_151_4_a16
N. A. Tyapin. On a Class of Almost Contact Metric Manifolds of Maximal Mobility. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 192-196. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a16/