On Measure Invariance for a 2-valued Transformation
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 183-191
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a family of 2-valued transformations of special form on the interval $[0,1]$ with measure $\mu=\int p(x)\,d\lambda$ which is absolutely continuous with respect to the Lebesgue measure. We endow $S$ with a set of weight functions $\alpha=\{\alpha_1(x),\alpha_2(x)\}$ and find a criterion of measure invariance under the transformation. This criterion relates the three parameters $a$, $p$, $\alpha$ to each other.
Keywords:
multivalued dynamical system, invariant measure.
@article{UZKU_2009_151_4_a15,
author = {P. I. Troshin},
title = {On {Measure} {Invariance} for a~2-valued {Transformation}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {183--191},
year = {2009},
volume = {151},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a15/}
}
TY - JOUR AU - P. I. Troshin TI - On Measure Invariance for a 2-valued Transformation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2009 SP - 183 EP - 191 VL - 151 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a15/ LA - ru ID - UZKU_2009_151_4_a15 ER -
P. I. Troshin. On Measure Invariance for a 2-valued Transformation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 183-191. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a15/
[1] Troshin P. I., “Mnogoznachnye dinamicheskie sistemy s vesami”, Izv. vuzov. Matem., 2009, no. 7, 35–50 | Zbl
[2] Rényi A., “Representations for real numbers and their ergodic properties”, Acta Math. Acad. Sci. Hung., 8 (1957), 477–493 | DOI | MR | Zbl
[3] Parry W., “On the $\beta$-expansions of real numbers”, Acta Math. Acad. Sci. Hung., 11 (1957), 401–416 | DOI | MR
[4] Igudesman K. B., “Verkhnie adresa dlya odnogo semeistva sistem iterirovannykh funktsii na otrezke”, Izv. vuzov. Matem., 2009, no. 9, 75–81 | Zbl