Infinitesimal Harmonic Transformations and Ricci Solitons
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 150-159
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Ricci soliton on a smooth manifold $M$ is a triple $(g_0,\xi,\lambda)$, where $g_0$ is a complete Riemannian metric, $\xi$ a vector field, and $\lambda$ a constant such that the Ricci tensor $\mathrm{Ric}_0$ of $g_0$ satisfies the equation $-2\mathrm{Ric}_0=L_\xi g_0+2\lambda g_0$. In the paper, we study the geometry of Ricci solitons in dependence of the properties of the vector field $\xi$. In particular, we prove that this vector field is a harmonic transformation.
Keywords: Riemannian manifold, infinitesimal harmonic transformation
Mots-clés : Ricci soliton.
@article{UZKU_2009_151_4_a11,
     author = {S. E. Stepanov and I. G. Shandra and V. N. Shelepova},
     title = {Infinitesimal {Harmonic} {Transformations} and {Ricci} {Solitons}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {150--159},
     year = {2009},
     volume = {151},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a11/}
}
TY  - JOUR
AU  - S. E. Stepanov
AU  - I. G. Shandra
AU  - V. N. Shelepova
TI  - Infinitesimal Harmonic Transformations and Ricci Solitons
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 150
EP  - 159
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a11/
LA  - ru
ID  - UZKU_2009_151_4_a11
ER  - 
%0 Journal Article
%A S. E. Stepanov
%A I. G. Shandra
%A V. N. Shelepova
%T Infinitesimal Harmonic Transformations and Ricci Solitons
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 150-159
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a11/
%G ru
%F UZKU_2009_151_4_a11
S. E. Stepanov; I. G. Shandra; V. N. Shelepova. Infinitesimal Harmonic Transformations and Ricci Solitons. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 150-159. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a11/

[1] Besse A., Mnogoobraziya Einshteina, Mir, M., 1990, 703 pp. | MR | Zbl

[2] De Ram Zh., Differentsiruemye mnogoobraziya, Inostr. lit., M., 1956, 250 pp.

[3] Pale R., Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970, 359 pp. | MR

[4] Smolnikova M. V., Stepanov S. E., Shandra I. G., “Infinitezimalnye garmonicheskie preobrazovaniya”, Izv. vuzov. Matem., 2004, no. 5, 69–75 | MR | Zbl

[5] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986, 224 pp. | MR

[6] Yano K., Integral formulas in Riemannian geometry, Marcel Dekker, N.Y., 1970, 156 pp. | MR | Zbl

[7] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981, 344 pp. | MR

[8] Yano K., Bokhner S., Krivizna i chisla Betti, Inostr. lit., M., 1957, 152 pp.

[9] Stepanov S. E., Shandra I. G., “Garmonicheskie diffeomorfizmy mnogoobrazii”, Algebra i analiz, 16:2 (2004), 154–171 | MR | Zbl

[10] Stepanov S. E., Shandra I. G., “Geometry of infinitesimal harmonic transformations”, Ann. Global Anal. Geom., 24 (2003), 291–299 | DOI | MR | Zbl

[11] Chow B., Knopf D., The Ricci flow: An introduction, Mathematical surveys and monographs, 110, Amer. Math. Soc., Providence, RI, 2004, 325 pp. | DOI | MR | Zbl

[12] Chow B., Lu P., Ni L., Hamilton's Ricci flow, Graduate studies in mathematics, 77, Amer. Math. Soc., Science Press, Providence, RI, 2006, 608 pp. | MR | Zbl

[13] Stepanov S. E., Shelepova V. N., “O solitonakh Richchi s usloviyami na skalyarnuyu kriviznu i kriviznu Richchi”, Tez. dokl. mezhdunar. konf. “Geometriya v Odesse – 2008” (19–24 maya 2008 g.), Fond “Nauka”, Odessa, 2008, 127–128

[14] Eminent M., La Nave G., Mantegazza C., “Ricci solitons – the equation point of view”, Manuscr. Math., 127:3 (2008), 345–367 | DOI | MR | Zbl

[15] Yau S. T., “Some function-theoretic properties of complete Riemannian manifold and their applications to geometry”, Indiana Univ. Math. J., 25 (1976), 659–670 | DOI | MR | Zbl

[16] Caminha A., Sousa P., Camargo F., Complete foliations of space forms by hypersur-faces, , 6 Aug. 2009, 11 pp. arxiv: 0908.0786v1[math.DG]