Voir la notice du chapitre de livre
Keywords: geodesic space, intrinsic metric, Hausdorff metric, proper space.
@article{UZKU_2009_151_4_a10,
author = {E. N. Sosov},
title = {Metric {Space} of {All} $N$-nets of {a~Geodesic} {Space}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {136--149},
year = {2009},
volume = {151},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a10/}
}
E. N. Sosov. Metric Space of All $N$-nets of a Geodesic Space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 136-149. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a10/
[1] Fedorchuk V. V., Filippov V. V., “Topologiya giperprostranstv i ee prilozheniya”, Matem. kibernetika, 1989, no. 4, 1–48 | MR
[2] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966, 594 pp. | MR
[3] Burago Yu. D., Gromov M. L., Perelman G. D., “Prostranstva A. D. Aleksandrova s ogranichennymi snizu kriviznami”, Usp. matem. nauk, 47:2 (1992), 3–51 | MR | Zbl
[4] Buzeman G., Geometriya geodezicheskikh, Fizmatgiz, M., 1962, 503 pp. | MR
[5] Bridson M. R., Haeffliger A. A., “Metric spaces of non-positive curvature”, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999, 643 pp. | DOI | MR | Zbl
[6] Bing R. H., “A convex metric with unique segments”, Proc. AMS, 4 (1953), 167–174 | DOI | MR | Zbl
[7] Garkavi A. L., “O nailuchshei seti i nailuchshem sechenii mnozhestv v normirovannom prostranstve”, Izv. AN SSSR. Ser. matem., 26:1 (1962), 87–106 | MR | Zbl
[8] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. issled., Moskva–Izhevsk, 2004, 496 pp.
[9] Foertsch T., Isometries of spaces of convex compact subsets of $CAT(0)$-spaces, , 21 Apr. 2004 arxiv: math/0404380v1[math.MG]
[10] Sosov E. N., “On Hausdorff intrinsic metric”, Lobachevskii J. Math., 8 (2001), 185–189 | MR | Zbl