Almost Geodesic Mappings of Type $\pi_1$ onto Generalized Ricci-symmetric Spaces
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 9-14
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We deduce necessary and sufficient conditions in order that a manifold with linear connection admit an almost geodesic mapping of type $\pi_1$ in the sense of N. S. Sinyukov onto a generalized Ricci-symmetric manifold.
Keywords: almost geodesic mapping of type $\pi_1$, generalized Ricci-symmetric manifold, affinely connected space.
@article{UZKU_2009_151_4_a1,
     author = {V. E. Berezovski and J. Mike\v{s}},
     title = {Almost {Geodesic} {Mappings} of {Type} $\pi_1$ onto {Generalized} {Ricci-symmetric} {Spaces}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {9--14},
     year = {2009},
     volume = {151},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a1/}
}
TY  - JOUR
AU  - V. E. Berezovski
AU  - J. Mikeš
TI  - Almost Geodesic Mappings of Type $\pi_1$ onto Generalized Ricci-symmetric Spaces
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 9
EP  - 14
VL  - 151
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a1/
LA  - ru
ID  - UZKU_2009_151_4_a1
ER  - 
%0 Journal Article
%A V. E. Berezovski
%A J. Mikeš
%T Almost Geodesic Mappings of Type $\pi_1$ onto Generalized Ricci-symmetric Spaces
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 9-14
%V 151
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a1/
%G ru
%F UZKU_2009_151_4_a1
V. E. Berezovski; J. Mikeš. Almost Geodesic Mappings of Type $\pi_1$ onto Generalized Ricci-symmetric Spaces. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 4, pp. 9-14. http://geodesic.mathdoc.fr/item/UZKU_2009_151_4_a1/

[1] Sinyukov N. S., Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979, 256 pp. | MR | Zbl

[2] Berezovsky V., Mikeš J., “On a classification of almost geodesic mappings of affine connection spaces”, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math., 35 (1996), 21–24 | MR

[3] Berezovski V.E., Mikeš J. Vanžurová A., “Canonical almost geodesic mappings of type $\pi_1$ onto pseudo-Riemannian manifolds”, Diff. Geom. and its Appl., Proc. Conf. (Olomouc, August, 2007), World Sci. Publ. Comp., 2008, 65–76 | MR

[4] Chernyshenko V. M., “Prostranstva affinnoi svyaznosti s sootvetstvuyuschim kompleksom geodezicheskikh”, Nauch. zap. Dnepr. un-ta, 55:6 (1961), 105–118

[5] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, Dokl. AN SSSR, 151:4 (1963), 781–782 | Zbl

[6] Sinyukov N. S., “Pochti geodezicheskie otobrazheniya prostranstv affinnoi svyaznosti i rimanovykh prostranstv”, Itogi nauki i tekhn. Ser. Problemy geometrii, 13, VINITI, M., 1982, 3–26 | MR | Zbl