Three-dimensional finite element for analysis of thin-shell constructions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 121-129
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article regards the construction of a new finite element for calculating the middle thickness of shells on the basis of a modification of three-dimensional isoparametric 8-node element through introduction of a hypothesis of infinitesimality of compression strains and usage of the technique of approximation order reduction. The method of double approximations on superconvergence points has been applied. Effectiveness of the given approach is shown on numerical examples.
Keywords: shell finite element, elastic strains, metric tensor, method of double approximation, hypothesis of infinitesimality of compression strains.
@article{UZKU_2009_151_3_a9,
     author = {A. I. Golovanov and M. K. Sagdatullin},
     title = {Three-dimensional finite element for analysis of thin-shell constructions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {121--129},
     year = {2009},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/}
}
TY  - JOUR
AU  - A. I. Golovanov
AU  - M. K. Sagdatullin
TI  - Three-dimensional finite element for analysis of thin-shell constructions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 121
EP  - 129
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/
LA  - ru
ID  - UZKU_2009_151_3_a9
ER  - 
%0 Journal Article
%A A. I. Golovanov
%A M. K. Sagdatullin
%T Three-dimensional finite element for analysis of thin-shell constructions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 121-129
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/
%G ru
%F UZKU_2009_151_3_a9
A. I. Golovanov; M. K. Sagdatullin. Three-dimensional finite element for analysis of thin-shell constructions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 121-129. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/

[1] Golovanov A. I., Pesoshin A. V., Tyuleneva O. N., Sovremennye konechno-elementnye modeli i metody issledovaniya tonkostennykh konstruktsii, Kazan. gos. un-t, Kazan, 2005, 442 pp.

[2] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006, 392 pp.

[3] Yang H. T. Y., Saigal S., Masud A., Kapania R. K., “A survey of recent shell finite elements”, Int. J. for numerical methods in engineering, 47 (2000), 101–127 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[4] Sakharov A. S., Kislookii V. N., Kirichevskii V. V., Altenbakh I., Gabbert U., Dankert Yu., Keppler Kh., Kochyk Z., Metod konechnykh elementov v mekhanike tverdykh tel, Vischa shk., Kiev, 1982, 480 pp. | MR

[5] Berezhnoi D. V., “Iskrivlennyi konechnyi element plastin i obolochek srednei tolschiny s uchetom obzhatiya”, Trudy XVII mezhdunar. konf. po teorii obolochek i plastin, v. 2, Kazan. gos. un-t, Kazan, 1996, 94–99

[6] Gurielidze M. G., Golovanov A. I., “Raschet tolstostennykh obolochek s uchetom bolshikh deformatsii”, Trudy XVII mezhdunar. konf. po teorii obolochek i plastin, v. 2, Kazan. gos. un-t, Kazan, 1996, 118–123

[7] Golovanov A. I., Gurielidze M. G., “Poshagovaya postanovka resheniya geometricheski nelineinoi zadachi MKE”, Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred, M., 1998, 82–87

[8] Bazhenov V. A., Sakharov A. S., Tsykhanovskii V. K., “Momentnaya skhema metoda konechnykh elementov v zadachakh nelineinoi mekhaniki sploshnoi sredy”, Prikl. mekhanika, 38:6 (2002), 24–63 | Zbl

[9] Konyukhov A. V., Konoplev Yu. G., “Model termogiperuprugosti i ee primenenie k issledovaniyu poteri ustoichivosti razduvaemykh plastin”, Izv. vuzov. Aviats. tekhnika, 2006, no. 4, 7–13

[10] Kara N., Kumbasar N., “Three dimensional finite element for thick shells of general shape”, Int. J. for Physical and Engineering Sciences, 52 (2001), 1–7 | DOI

[11] de Sousa R. J. A., Cardoso R. P. R., Valente R. A. F., Yoon J.-W., Gracio J. J., Jorge R. M. N., “A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I – geometrically linear applications”, Int. J. for Numerical Methods in Engineering, 62:7 (2005), 952–977 | DOI | Zbl

[12] Sze K. Y., “Three-dimensional continuum finite element models for plate/shell analysis”, Prog. Struct. Engng Mater., 4 (2002), 400–407 | DOI

[13] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966, 636 pp. | Zbl