Voir la notice du chapitre de livre
@article{UZKU_2009_151_3_a9,
author = {A. I. Golovanov and M. K. Sagdatullin},
title = {Three-dimensional finite element for analysis of thin-shell constructions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {121--129},
year = {2009},
volume = {151},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/}
}
TY - JOUR AU - A. I. Golovanov AU - M. K. Sagdatullin TI - Three-dimensional finite element for analysis of thin-shell constructions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2009 SP - 121 EP - 129 VL - 151 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/ LA - ru ID - UZKU_2009_151_3_a9 ER -
%0 Journal Article %A A. I. Golovanov %A M. K. Sagdatullin %T Three-dimensional finite element for analysis of thin-shell constructions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2009 %P 121-129 %V 151 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/ %G ru %F UZKU_2009_151_3_a9
A. I. Golovanov; M. K. Sagdatullin. Three-dimensional finite element for analysis of thin-shell constructions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 121-129. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a9/
[1] Golovanov A. I., Pesoshin A. V., Tyuleneva O. N., Sovremennye konechno-elementnye modeli i metody issledovaniya tonkostennykh konstruktsii, Kazan. gos. un-t, Kazan, 2005, 442 pp.
[2] Golovanov A. I., Tyuleneva O. N., Shigabutdinov A. F., Metod konechnykh elementov v statike i dinamike tonkostennykh konstruktsii, Fizmatlit, M., 2006, 392 pp.
[3] Yang H. T. Y., Saigal S., Masud A., Kapania R. K., “A survey of recent shell finite elements”, Int. J. for numerical methods in engineering, 47 (2000), 101–127 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[4] Sakharov A. S., Kislookii V. N., Kirichevskii V. V., Altenbakh I., Gabbert U., Dankert Yu., Keppler Kh., Kochyk Z., Metod konechnykh elementov v mekhanike tverdykh tel, Vischa shk., Kiev, 1982, 480 pp. | MR
[5] Berezhnoi D. V., “Iskrivlennyi konechnyi element plastin i obolochek srednei tolschiny s uchetom obzhatiya”, Trudy XVII mezhdunar. konf. po teorii obolochek i plastin, v. 2, Kazan. gos. un-t, Kazan, 1996, 94–99
[6] Gurielidze M. G., Golovanov A. I., “Raschet tolstostennykh obolochek s uchetom bolshikh deformatsii”, Trudy XVII mezhdunar. konf. po teorii obolochek i plastin, v. 2, Kazan. gos. un-t, Kazan, 1996, 118–123
[7] Golovanov A. I., Gurielidze M. G., “Poshagovaya postanovka resheniya geometricheski nelineinoi zadachi MKE”, Dinamicheskie i tekhnologicheskie problemy mekhaniki konstruktsii i sploshnykh sred, M., 1998, 82–87
[8] Bazhenov V. A., Sakharov A. S., Tsykhanovskii V. K., “Momentnaya skhema metoda konechnykh elementov v zadachakh nelineinoi mekhaniki sploshnoi sredy”, Prikl. mekhanika, 38:6 (2002), 24–63 | Zbl
[9] Konyukhov A. V., Konoplev Yu. G., “Model termogiperuprugosti i ee primenenie k issledovaniyu poteri ustoichivosti razduvaemykh plastin”, Izv. vuzov. Aviats. tekhnika, 2006, no. 4, 7–13
[10] Kara N., Kumbasar N., “Three dimensional finite element for thick shells of general shape”, Int. J. for Physical and Engineering Sciences, 52 (2001), 1–7 | DOI
[11] de Sousa R. J. A., Cardoso R. P. R., Valente R. A. F., Yoon J.-W., Gracio J. J., Jorge R. M. N., “A new one-point quadrature enhanced assumed strain (EAS) solid-shell element with multiple integration points along thickness: Part I – geometrically linear applications”, Int. J. for Numerical Methods in Engineering, 62:7 (2005), 952–977 | DOI | Zbl
[12] Sze K. Y., “Three-dimensional continuum finite element models for plate/shell analysis”, Prog. Struct. Engng Mater., 4 (2002), 400–407 | DOI
[13] Timoshenko S. P., Voinovskii-Kriger S., Plastinki i obolochki, Nauka, M., 1966, 636 pp. | Zbl