Voir la notice du chapitre de livre
Mots-clés : finite domain
@article{UZKU_2009_151_3_a4,
author = {N. G. Abrashina-Zhadaeva and N. S. Romanova},
title = {Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {63--73},
year = {2009},
volume = {151},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/}
}
TY - JOUR AU - N. G. Abrashina-Zhadaeva AU - N. S. Romanova TI - Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2009 SP - 63 EP - 73 VL - 151 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/ LA - ru ID - UZKU_2009_151_3_a4 ER -
%0 Journal Article %A N. G. Abrashina-Zhadaeva %A N. S. Romanova %T Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2009 %P 63-73 %V 151 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/ %G ru %F UZKU_2009_151_3_a4
N. G. Abrashina-Zhadaeva; N. S. Romanova. Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 63-73. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/
[1] Kirchner J. W., Feng X. H., Neal C., “Fractal stream chemistry and its implications for contaminant transport in catchments”, Nature, 403 (2000), 524–527 | DOI
[2] Klafter J., Sokolov I. M., “Anomalous Diffusion Spreads Its Wings”, Physics World Features, 18:8 (2005), 29–32
[3] Dentz M., Cortis A., Sher H., Berkowitz B., “Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport”, Adv. Water Res., 27:2 (2004), 155–173 | DOI
[4] Fujiwara T., Ritchie K., Murakoshi H., Jacobson K., Kusumi A., “Phospholipids undergo hop diffusion in compartmentalized cell membrane”, J. Cell Biol., 157:6 (2002), 1071–1081 | DOI
[5] Min W., English B. P., Luo G., Cherayil B. J., Kou S. C., Xie X. S., “Fluctuating Enzymes: Lessons from Single-Molecule Studies”, Accounts Chem. Res., 38 (2005), 923–931 | DOI | MR
[6] Bolshov L. A., Goloviznin V. M., Dykhne A. M., Kiselev V. P., Kondratenko P. S., Semenov V. N., “Novye podkhody k otsenke bezopasnosti zakhoronenii radioaktivnykh otkhodov”, Izv. RAN. Ser. Energetika, 2004, no. 4, 99–108
[7] Metzler R., Klafter J., “The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A, 37:31 (2004), R161–R208 | DOI | MR | Zbl
[8] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh primeneniya, Nauka i tekhnika, Minsk, 1987, 687 pp. | MR | Zbl
[9] Miller K., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, N.Y., 1993, 384 pp. | MR
[10] Schumer R., Benson D. A., Meerschaert M. M., Wheatcraft S. W., “Eulerian derivation of the fractional advection-dispersion equation”, J. Contam. Hydrol., 48 (2001), 69–88 | DOI
[11] Meerschaert M. M., Tadjeran C., “Finite difference approximations for fractional advection-dispersion flow equations”, J. Comput. Appl. Math., 172 (2004), 65–77 | DOI | MR | Zbl
[12] Meerschaert M. M., Scheffer H., Tadjeran C., “Finite difference methods for two-dimensional fractional dispersion equation”, J. Comput. Phys., 211:2 (2006), 249–261 | DOI | MR | Zbl
[13] Meerschaert M. M., Mortensen J., Scheffler H.-P., “Vector Grünwald formula for fractional derivatives”, J. Fract. Calc. Appl. Anal., 2004, no. 7, 61–81 | MR | Zbl
[14] Abrashina-Zhadaeva N., Romanova N., “A Splitting Type Algorithm for Numerical Solution of PDEs of Fractional Order”, Math. Model. Anal., 12:4 (2007), 399–408 | DOI | MR | Zbl
[15] Abrashina-Zhadaeva N., Romanova N., “Vector Additive Decomposition for 2D Fractional Diffusion Equation”, Nonlinear Analysis: Modelling and Control, 13:2 (2008), 137–143 | MR | Zbl
[16] Abrashina-Zhadaeva N. G., Romanova N. S., “Mnogokomponentnye skhemy vektornogo rasschepleniya dlya resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. uravneniya, 42:7 (2006), 883–894 | MR | Zbl
[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR
[18] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 608 pp. | MR | Zbl
[19] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 432 pp. | Zbl
[20] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 197 pp. | Zbl
[21] Fadeev D. K., Fadeeva V. N., Vychislitelnye metody lineinoi algebry, Gos. izd-vo fiz.-matem. lit., M., 1963, 734 pp. | MR
[22] Zhadaeva N. G., “Mnogokomponentnyi variant metoda peremennykh napravlenii dlya evolyutsionnykh zadach. II”, Differents. uravneniya, 33:7 (1997), 998–1000 | MR | Zbl
[23] Abrashin V. N., Zhadaeva N. G., “Ob odnom metode kompozitsii postroeniya iteratsionnykh algoritmov resheniya statsionarnykh zadach matematicheskoi fiziki”, Differents. uravneniya, 35:7 (1999), 948–957 | MR | Zbl
[24] Gordeziani D. G., “Ob odnoi additivnoi modeli dlya parabolicheskikh uravnenii so smeshannymi proizvodnymi”, Sovr. problemy matem. fiziki i vychisl. matem., Nauka, M., 1982, 128–137 | MR
[25] Zhadaeva N. G., “Mnogokomponentnyi metod peremennykh napravlenii resheniya mnogomernykh zadach dlya ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Differents. uravneniya, 34:7 (1998), 948–957 | MR | Zbl