Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 63-73
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Approximate factorization schemes and vector-additive algorithms are offered for numerical modelling of two-dimensional differential equations in partial derivatives of fractional orders on finite domain. The stability of these schemes is proved. Theoretical results are validated by a numerical example.
Keywords: fractional order partial derivatives, Dirichlet problem, additive and vector-additive methods, unconditional stability.
Mots-clés : finite domain
@article{UZKU_2009_151_3_a4,
     author = {N. G. Abrashina-Zhadaeva and N. S. Romanova},
     title = {Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {63--73},
     year = {2009},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/}
}
TY  - JOUR
AU  - N. G. Abrashina-Zhadaeva
AU  - N. S. Romanova
TI  - Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 63
EP  - 73
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/
LA  - ru
ID  - UZKU_2009_151_3_a4
ER  - 
%0 Journal Article
%A N. G. Abrashina-Zhadaeva
%A N. S. Romanova
%T Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 63-73
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/
%G ru
%F UZKU_2009_151_3_a4
N. G. Abrashina-Zhadaeva; N. S. Romanova. Approximate factorization method for two-dimensional equations in partial fractional derivatives on finite domain. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 63-73. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a4/

[1] Kirchner J. W., Feng X. H., Neal C., “Fractal stream chemistry and its implications for contaminant transport in catchments”, Nature, 403 (2000), 524–527 | DOI

[2] Klafter J., Sokolov I. M., “Anomalous Diffusion Spreads Its Wings”, Physics World Features, 18:8 (2005), 29–32

[3] Dentz M., Cortis A., Sher H., Berkowitz B., “Time behavior of solute transport in heterogeneous media: transition from anomalous to normal transport”, Adv. Water Res., 27:2 (2004), 155–173 | DOI

[4] Fujiwara T., Ritchie K., Murakoshi H., Jacobson K., Kusumi A., “Phospholipids undergo hop diffusion in compartmentalized cell membrane”, J. Cell Biol., 157:6 (2002), 1071–1081 | DOI

[5] Min W., English B. P., Luo G., Cherayil B. J., Kou S. C., Xie X. S., “Fluctuating Enzymes: Lessons from Single-Molecule Studies”, Accounts Chem. Res., 38 (2005), 923–931 | DOI | MR

[6] Bolshov L. A., Goloviznin V. M., Dykhne A. M., Kiselev V. P., Kondratenko P. S., Semenov V. N., “Novye podkhody k otsenke bezopasnosti zakhoronenii radioaktivnykh otkhodov”, Izv. RAN. Ser. Energetika, 2004, no. 4, 99–108

[7] Metzler R., Klafter J., “The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A, 37:31 (2004), R161–R208 | DOI | MR | Zbl

[8] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh primeneniya, Nauka i tekhnika, Minsk, 1987, 687 pp. | MR | Zbl

[9] Miller K., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, N.Y., 1993, 384 pp. | MR

[10] Schumer R., Benson D. A., Meerschaert M. M., Wheatcraft S. W., “Eulerian derivation of the fractional advection-dispersion equation”, J. Contam. Hydrol., 48 (2001), 69–88 | DOI

[11] Meerschaert M. M., Tadjeran C., “Finite difference approximations for fractional advection-dispersion flow equations”, J. Comput. Appl. Math., 172 (2004), 65–77 | DOI | MR | Zbl

[12] Meerschaert M. M., Scheffer H., Tadjeran C., “Finite difference methods for two-dimensional fractional dispersion equation”, J. Comput. Phys., 211:2 (2006), 249–261 | DOI | MR | Zbl

[13] Meerschaert M. M., Mortensen J., Scheffler H.-P., “Vector Grünwald formula for fractional derivatives”, J. Fract. Calc. Appl. Anal., 2004, no. 7, 61–81 | MR | Zbl

[14] Abrashina-Zhadaeva N., Romanova N., “A Splitting Type Algorithm for Numerical Solution of PDEs of Fractional Order”, Math. Model. Anal., 12:4 (2007), 399–408 | DOI | MR | Zbl

[15] Abrashina-Zhadaeva N., Romanova N., “Vector Additive Decomposition for 2D Fractional Diffusion Equation”, Nonlinear Analysis: Modelling and Control, 13:2 (2008), 137–143 | MR | Zbl

[16] Abrashina-Zhadaeva N. G., Romanova N. S., “Mnogokomponentnye skhemy vektornogo rasschepleniya dlya resheniya mnogomernykh zadach matematicheskoi fiziki”, Differents. uravneniya, 42:7 (2006), 883–894 | MR | Zbl

[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[18] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989, 608 pp. | MR | Zbl

[19] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973, 432 pp. | Zbl

[20] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967, 197 pp. | Zbl

[21] Fadeev D. K., Fadeeva V. N., Vychislitelnye metody lineinoi algebry, Gos. izd-vo fiz.-matem. lit., M., 1963, 734 pp. | MR

[22] Zhadaeva N. G., “Mnogokomponentnyi variant metoda peremennykh napravlenii dlya evolyutsionnykh zadach. II”, Differents. uravneniya, 33:7 (1997), 998–1000 | MR | Zbl

[23] Abrashin V. N., Zhadaeva N. G., “Ob odnom metode kompozitsii postroeniya iteratsionnykh algoritmov resheniya statsionarnykh zadach matematicheskoi fiziki”, Differents. uravneniya, 35:7 (1999), 948–957 | MR | Zbl

[24] Gordeziani D. G., “Ob odnoi additivnoi modeli dlya parabolicheskikh uravnenii so smeshannymi proizvodnymi”, Sovr. problemy matem. fiziki i vychisl. matem., Nauka, M., 1982, 128–137 | MR

[25] Zhadaeva N. G., “Mnogokomponentnyi metod peremennykh napravlenii resheniya mnogomernykh zadach dlya ellipticheskikh uravnenii so smeshannymi proizvodnymi”, Differents. uravneniya, 34:7 (1998), 948–957 | MR | Zbl