$\mathbb R$-linear conjugation problem for a confocal parabolic annulus
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 170-178
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article presents an analytical closed-form solution derived for an $\mathbb R$-linear conjugation problem for a confocal parabolic annulus. The cases of real and complex coefficients of boundary conditions are comprehensively studied. The solution is found in the class of piece-wise holomorphic functions with fixed finite value at infinity in one of the media components.
Keywords: heterogeneous media, $\mathbb R$-linear conjugation problem, holomorphic functions.
@article{UZKU_2009_151_3_a14,
     author = {Yu. V. Obnosov and M. A. Egorova},
     title = {$\mathbb R$-linear conjugation problem for a~confocal parabolic annulus},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {170--178},
     year = {2009},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a14/}
}
TY  - JOUR
AU  - Yu. V. Obnosov
AU  - M. A. Egorova
TI  - $\mathbb R$-linear conjugation problem for a confocal parabolic annulus
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 170
EP  - 178
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a14/
LA  - ru
ID  - UZKU_2009_151_3_a14
ER  - 
%0 Journal Article
%A Yu. V. Obnosov
%A M. A. Egorova
%T $\mathbb R$-linear conjugation problem for a confocal parabolic annulus
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 170-178
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a14/
%G ru
%F UZKU_2009_151_3_a14
Yu. V. Obnosov; M. A. Egorova. $\mathbb R$-linear conjugation problem for a confocal parabolic annulus. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 170-178. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a14/

[1] Obnosov Yu. V., “Reshenie zadachi R-lineinogo sopryazheniya v sluchae giperbolicheskoi linii razdeleniya raznorodnykh faz”, Izv. vuzov. Matem., 2004, no. 7, 53–62 | MR | Zbl

[2] Obnosov Yu. V., “Reshenie zadachi o raspredelenii filtratsionnykh polei v beskonechnom poristom massive s dvumya krugovymi vklyucheniyami”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 148, no. 2, 2006, 109–123 | Zbl

[3] Maltseva A. M., Obnosov Yu. V., Rogozin S. V., “Obobschenie teoremy Miln-Tomsona na sluchai kontsentricheskogo koltsa”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 148, no. 4, 2006, 35–50

[4] Obnosov Yu. V., “A generalized Milne-Thomson theorem for the case of parabolic inclusion”, Appl. Math. Model., 33 (2009), 1970–1981 | DOI | MR | Zbl

[5] Obnosov Yu. V., Nikonenkova T. V., “Solution of an $\mathbb R$-linear conjugation problem on the case of hyperbolic interface”, Lithuanian Math. J., 48:3 (2008), 322–331 | DOI | MR | Zbl

[6] Obnosov Yu. V., “Zadacha $\mathbb R$-lineinogo sopryazheniya dlya sofokusnogo ellipticheskogo koltsa”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 4, 2008, 137–146 | Zbl

[7] Obnosov Yu. V., Kraevye zadachi teorii geterogennykh sred, Mnogofaznye sredy, razdelennye krivymi vtorogo poryadka, Izd-vo Kazan. un-ta, Kazan, 2009, 205 pp.

[8] Golubeva O. V., Shpilevoi A. Ya., “O ploskoi filtratsii v sredakh s preryvno izmenyayuscheisya pronitsaemostyu vdol krivykh vtorogo poryadka”, Izv. AN SSSR. MZhG, 1967, no. 2, 174–179

[9] Emets Yu. P., Kraevye zadachi elektrodinamiki anizotropno provodyaschikh sred, Naukova dumka, Kiev, 1987, 254 pp.