On convergence of multigrid method for elliptic equations of second order
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 154-161
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Dirichlet problem for the general elliptic equation of second order in divergence form is considered. Convergence of the multigrid method for solving this problem is proved. The method investigated in the article is based on the application of conform finite elements and Jacobi smoother procedure.
Keywords: linear elliptic equation of second order, finite element method, multigrid method, convergence research.
@article{UZKU_2009_151_3_a12,
     author = {M. M. Karchevsky},
     title = {On convergence of multigrid method for elliptic equations of second order},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {154--161},
     year = {2009},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a12/}
}
TY  - JOUR
AU  - M. M. Karchevsky
TI  - On convergence of multigrid method for elliptic equations of second order
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 154
EP  - 161
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a12/
LA  - ru
ID  - UZKU_2009_151_3_a12
ER  - 
%0 Journal Article
%A M. M. Karchevsky
%T On convergence of multigrid method for elliptic equations of second order
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 154-161
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a12/
%G ru
%F UZKU_2009_151_3_a12
M. M. Karchevsky. On convergence of multigrid method for elliptic equations of second order. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 154-161. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a12/

[1] Hackbusch W., Multi-Grid Methods and Applications, Springer, Berlin, 1985, 377 pp. | Zbl

[2] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989, 288 pp. | MR

[3] Braess D., Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Springer, Berlin, 2003, 342 pp. | Zbl

[4] Olshanskii M. A., Lektsii i uprazhneniya po mnogosetochnym metodam, Fizmatlit, M., 2005, 176 pp. | Zbl

[5] Olshanskii M. A., “Analiz mnogosetochnogo metoda dlya uravneniya konvektsii-diffuzii s kraevymi usloviyami Dirikhle”, Zhurn. vychisl. matem. i matem. fiz., 44:8 (2004), 1462–1491 | MR

[6] Reusken A., “Introduction to multigrid methods for elliptic boundary value problems”, Multiscale Simulation Methods in Molecular Sciences, NIC Series, 42, eds. J. Grotendorst, N. Attig, S. Blügel, D. Marx, Institute for Advanced Simulation, Forschungszentrum Jüulich, Jüulich, 2009, 467–506; свободный доступ http://www.fz-juelich.de/nic-series/volume42/reusken.pdf

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[8] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR

[9] Dautov R. Z., Karchevskii M. M., Vedenie v teoriyu metoda konechnykh elementov, Izd-vo Kazan. un-ta, Kazan, 2004, 239 pp.

[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR

[11] Riss F., Sëkefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979, 588 pp. | MR