Voir la notice du chapitre de livre
@article{UZKU_2009_151_3_a11,
author = {E. I. Kalinin and A. B. Mazo},
title = {Numerical simulation of flow around a~system of bodies in stream function{\textendash}vorticity variables},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {144--153},
year = {2009},
volume = {151},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/}
}
TY - JOUR AU - E. I. Kalinin AU - A. B. Mazo TI - Numerical simulation of flow around a system of bodies in stream function–vorticity variables JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2009 SP - 144 EP - 153 VL - 151 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/ LA - ru ID - UZKU_2009_151_3_a11 ER -
%0 Journal Article %A E. I. Kalinin %A A. B. Mazo %T Numerical simulation of flow around a system of bodies in stream function–vorticity variables %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2009 %P 144-153 %V 151 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/ %G ru %F UZKU_2009_151_3_a11
E. I. Kalinin; A. B. Mazo. Numerical simulation of flow around a system of bodies in stream function–vorticity variables. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 144-153. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/
[1] Mizukami A., “A stream function-vorticity finite element formulation for Navier–Stokes equations in multiconnected domain”, Int. J. Numer. Methods Eng., 19 (1983), 1403–1409 | DOI | Zbl
[2] Tezduyar T., “Finite element formulation for the vorticity-stream function form of the incompressible Euler equations on multi-connected domains”, Comput. Methods Appl. Mech. Eng., 73:3 (1989), 331–340 | DOI | MR
[3] Liu J.-G., Wang C., “High order finite difference methods for unsteady incompressible flows in multi-connected domains”, Computers Fluids, 33 (2004), 223–255 | DOI | MR | Zbl
[4] Fletcher K., Vychislitelnaya gidrodinamika, Ch. 2, Mir, M., 1991, 552 pp. | MR
[5] Glovinski R., “Finite element methods for incompressible viscous flow”, Handbook of numerical analysis, v. 9, Numerical Methods for Fluids (Part 3), Elsevier Science B. V., 2003, 1176 pp. | MR
[6] Mazo A. B., Dautov R. Z., “O granichnykh usloviyakh dlya uravnenii Nave–Stoksa v peremennykh funktsiya toka–zavikhrennost pri modelirovanii obtekaniya sistemy tel”, Inzhenerno-fiz. zhurn., 78:2 (2005), 75–79
[7] Kuzmin D., Turek S., “High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter”, J. Comp. Phys., 198 (2004), 131–158 | DOI | MR | Zbl
[8] Mazo A. B., Kalinin E. I., “Reshenie zadach obtekaniya v peremennykh “funktsiya toka–vikhr” metodom konechnykh elementov s primeneniem TVD-podkhoda”, Modeli i metody aerodinamiki, Materialy 8-i mezhdunar. shkoly-seminara, MTsNMO, M., 2008, 100–101
[9] Hyun Sik Yoon, Ho Hwan Chun, Jeong Hu Kim, I. L. Ryong Park, “Flow characteristics of two rotating side-by-side circular cylinder”, Computers Fluids, 38 (2009), 466–474 | DOI | Zbl
[10] Khodary K., Bhattacharyya T. K., “Optimum natural convection from square cylinder in vertical channel”, Int. J. Heat Fluid Flow, 27 (2006), 167–180 | DOI
[11] Mazo A. B., “Chislennoe modelirovanie svobodnoi konvektsii vyazkoi zhidkosti v kanale s nagretym tsilindrom”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 147, no. 3, 2005, 141–147 | Zbl