Numerical simulation of flow around a system of bodies in stream function–vorticity variables
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 144-153
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A numerical algorithm for simulating non-stationary viscous 2D flows based on solving Navier–Stokes equations in stream function–vorticity variables is developed. The algorithm allows to model the forced flows as well as the complex convective flows around a system of bodies in channel. Problem definition is amplified with nonlocal integral equalities based on Pearson conditions in order to obtain boundary values of stream function.
Keywords: numerical simulation, flow around a system of bodies, Navier–Stokes equations in stream function–vorticity variables, boundary conditions, integral Pearson conditions.
@article{UZKU_2009_151_3_a11,
     author = {E. I. Kalinin and A. B. Mazo},
     title = {Numerical simulation of flow around a~system of bodies in stream function{\textendash}vorticity variables},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {144--153},
     year = {2009},
     volume = {151},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/}
}
TY  - JOUR
AU  - E. I. Kalinin
AU  - A. B. Mazo
TI  - Numerical simulation of flow around a system of bodies in stream function–vorticity variables
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 144
EP  - 153
VL  - 151
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/
LA  - ru
ID  - UZKU_2009_151_3_a11
ER  - 
%0 Journal Article
%A E. I. Kalinin
%A A. B. Mazo
%T Numerical simulation of flow around a system of bodies in stream function–vorticity variables
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 144-153
%V 151
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/
%G ru
%F UZKU_2009_151_3_a11
E. I. Kalinin; A. B. Mazo. Numerical simulation of flow around a system of bodies in stream function–vorticity variables. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 3, pp. 144-153. http://geodesic.mathdoc.fr/item/UZKU_2009_151_3_a11/

[1] Mizukami A., “A stream function-vorticity finite element formulation for Navier–Stokes equations in multiconnected domain”, Int. J. Numer. Methods Eng., 19 (1983), 1403–1409 | DOI | Zbl

[2] Tezduyar T., “Finite element formulation for the vorticity-stream function form of the incompressible Euler equations on multi-connected domains”, Comput. Methods Appl. Mech. Eng., 73:3 (1989), 331–340 | DOI | MR

[3] Liu J.-G., Wang C., “High order finite difference methods for unsteady incompressible flows in multi-connected domains”, Computers Fluids, 33 (2004), 223–255 | DOI | MR | Zbl

[4] Fletcher K., Vychislitelnaya gidrodinamika, Ch. 2, Mir, M., 1991, 552 pp. | MR

[5] Glovinski R., “Finite element methods for incompressible viscous flow”, Handbook of numerical analysis, v. 9, Numerical Methods for Fluids (Part 3), Elsevier Science B. V., 2003, 1176 pp. | MR

[6] Mazo A. B., Dautov R. Z., “O granichnykh usloviyakh dlya uravnenii Nave–Stoksa v peremennykh funktsiya toka–zavikhrennost pri modelirovanii obtekaniya sistemy tel”, Inzhenerno-fiz. zhurn., 78:2 (2005), 75–79

[7] Kuzmin D., Turek S., “High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter”, J. Comp. Phys., 198 (2004), 131–158 | DOI | MR | Zbl

[8] Mazo A. B., Kalinin E. I., “Reshenie zadach obtekaniya v peremennykh “funktsiya toka–vikhr” metodom konechnykh elementov s primeneniem TVD-podkhoda”, Modeli i metody aerodinamiki, Materialy 8-i mezhdunar. shkoly-seminara, MTsNMO, M., 2008, 100–101

[9] Hyun Sik Yoon, Ho Hwan Chun, Jeong Hu Kim, I. L. Ryong Park, “Flow characteristics of two rotating side-by-side circular cylinder”, Computers Fluids, 38 (2009), 466–474 | DOI | Zbl

[10] Khodary K., Bhattacharyya T. K., “Optimum natural convection from square cylinder in vertical channel”, Int. J. Heat Fluid Flow, 27 (2006), 167–180 | DOI

[11] Mazo A. B., “Chislennoe modelirovanie svobodnoi konvektsii vyazkoi zhidkosti v kanale s nagretym tsilindrom”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 147, no. 3, 2005, 141–147 | Zbl