Clones, Co-Clones, Hyperclones and Superclones
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 2, pp. 120-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Resolvability operation on set of partial hyperoperations is introduced into consideration. The superclone is defined as algebra with the basic set of partial hyperoperations and two-place operation of substitution, single operations of cyclic shift of arguments, of argument transposition, of argument identification, of resolvability and nullary operations specifying operation of designing and everywhere uncertain operation. The relation of superclones to partial hyperclones, to co-clones, and to clones is studied. The statement about isomorphism of a lattice of superclones and lattice of co-clones over identical sets is proved.
Keywords: resolvability operation, hyperoperation, clone, superclone, partial hyperoperation, partial hyperclone, co-clone, lattice.
@article{UZKU_2009_151_2_a14,
     author = {N. A. Peryazev},
     title = {Clones, {Co-Clones,} {Hyperclones} and {Superclones}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {120--125},
     year = {2009},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a14/}
}
TY  - JOUR
AU  - N. A. Peryazev
TI  - Clones, Co-Clones, Hyperclones and Superclones
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 120
EP  - 125
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a14/
LA  - ru
ID  - UZKU_2009_151_2_a14
ER  - 
%0 Journal Article
%A N. A. Peryazev
%T Clones, Co-Clones, Hyperclones and Superclones
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 120-125
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a14/
%G ru
%F UZKU_2009_151_2_a14
N. A. Peryazev. Clones, Co-Clones, Hyperclones and Superclones. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 2, pp. 120-125. http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a14/

[1] Post E., “Determination of all closed systems of truth tables”, Bull. Amer. Math. Soc., 26 (1920), 427

[2] Post E., “Introduction to a general theory of elementary propositions”, Amer J. Math., 43 (1921), 163–185 | DOI | MR | Zbl

[3] Yablonskii S. V., “O superpozitsiyakh funktsii algebry logiki”, Matem. sb., 30(72):2 (1952), 329–348 | MR | Zbl

[4] Yablonskii S. V., “Funktsionalnye postroeniya v $k$-znachnoi logike”, Trudy Matem. in-ta AN SSSR im. V. A. Steklova, 51, 1958, 5–142 | MR | Zbl

[5] Maltsev A. I., “Iterativnye algebry i mnogoobraziya Posta”, Algebra i logika, 1966, no. 2, 3–26

[6] Maltsev A. I., Iterativnye algebry Posta, Novosib. gos. un-t, Novosibirsk, 1976, 100 pp. | MR

[7] Szendrei A., Clones in universal algebra, Les Presses de l'Universite de Montreal, Montreal, 1986, 166 pp. | MR | Zbl

[8] Lau D., Function Algebras on Finite Sets, Springer-Verlag, Berlin, 2006, 668 pp. | MR

[9] Bondarchuk V. G., Kaluzhnin L. A., Kotov V. N., Romov B. A., “Teoriya Galua dlya algebr Posta”, Kibernetika, 1969, no. 3, 1–10; no. 5, 1–9 | MR | Zbl

[10] Peryazev N. A., “Nedoopredelennye chastichnye bulevy funktsii”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XV mezhdunar. konf. (Kazan, 2–7 iyunya 2008 g.), Otechestvo, Kazan, 2008, 92

[11] Peryazev N. A., “Superklony nedoopredelennykh chastichnykh funktsii”, Sintaksis i semantika logicheskikh sistem, Materialy ros. shkoly-seminara (Vladivostok, 25–29 avgusta 2008 g.), Dalnauka, Vladivostok, 2008, 40–42