Special Expansions of Underdetermined Partial Boolean Functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 2, pp. 114-119 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper views special expansion of functions determined on two-element set and taking four meanings. In particular, it is shown that there are expansions for such functions, which are analogous to known expansion of Boolean functions, i.e. disjunctive normal form and conjunctive normal form. As a sequence of received expansion, some complete and maximal sets are described.
Keywords: partial Boolean functions, hyperoperation, complete sets, special representations.
Mots-clés : composition
@article{UZKU_2009_151_2_a13,
     author = {V. I. Panteleyev},
     title = {Special {Expansions} of {Underdetermined} {Partial} {Boolean} {Functions}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {114--119},
     year = {2009},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a13/}
}
TY  - JOUR
AU  - V. I. Panteleyev
TI  - Special Expansions of Underdetermined Partial Boolean Functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 114
EP  - 119
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a13/
LA  - ru
ID  - UZKU_2009_151_2_a13
ER  - 
%0 Journal Article
%A V. I. Panteleyev
%T Special Expansions of Underdetermined Partial Boolean Functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 114-119
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a13/
%G ru
%F UZKU_2009_151_2_a13
V. I. Panteleyev. Special Expansions of Underdetermined Partial Boolean Functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 2, pp. 114-119. http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a13/

[1] Panteleev V. I., Peryazev N. A., “Nedoopredelennye chastichnye bulevy funktsii i bulevy uravneniya”, Materialy VII mezhdunar. konf. “Diskretnye modeli v teorii upravlyayuschikh sistem”, MAKS Press, M., 2006, 262–265

[2] Freivald R. V., “O polnote chastichnykh funktsii algebry logiki”, Dokl. AN SSSR, 167:6 (1966), 1249–1250 | MR

[3] Tarasov V. V., “Kriterii polnoty dlya ne vsyudu opredelennykh funktsii algebry logiki”, Problemy kibernetiki, 30, Nauka, M., 1975, 319–325 | MR

[4] Doroslovački R., Pantović J., Vojvodić G., “One interval in the lattice of partial hyperclones”, Chechoslovak Math. J., 55(130) (2005), 719–724 | DOI | MR | Zbl

[5] Rosenberg I. G., “An algebraic approach to hyperalgebras”, Proc. 26th ISML (Santiago de Compostelo, May 28–31, 1996), 1996, 203–207

[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Nauka, M., 1986, 384 pp. | MR