On Multiplexer Function Complexity in the $\pi$-schemes Class
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 2, pp. 98-106
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is proven that $n$-th's order multiplexer realization complexity in $\pi$-schemes class is equal to $2^{n+1}+\frac{2^n}n\pm O(\frac{2^n}{n\log n})$ and, thus, the so-called high-accuracy asymptotic bounds for the stated complexity are established for the first time.
Keywords: multiplexer function, complexity, parallel-consecutive scheme, high-accuracy asymptotic bounds.
@article{UZKU_2009_151_2_a11,
     author = {S. A. Lozhkin and N. V. Vlasov},
     title = {On {Multiplexer} {Function} {Complexity} in the $\pi$-schemes {Class}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {98--106},
     year = {2009},
     volume = {151},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a11/}
}
TY  - JOUR
AU  - S. A. Lozhkin
AU  - N. V. Vlasov
TI  - On Multiplexer Function Complexity in the $\pi$-schemes Class
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2009
SP  - 98
EP  - 106
VL  - 151
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a11/
LA  - ru
ID  - UZKU_2009_151_2_a11
ER  - 
%0 Journal Article
%A S. A. Lozhkin
%A N. V. Vlasov
%T On Multiplexer Function Complexity in the $\pi$-schemes Class
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2009
%P 98-106
%V 151
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a11/
%G ru
%F UZKU_2009_151_2_a11
S. A. Lozhkin; N. V. Vlasov. On Multiplexer Function Complexity in the $\pi$-schemes Class. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 151 (2009) no. 2, pp. 98-106. http://geodesic.mathdoc.fr/item/UZKU_2009_151_2_a11/

[1] Lupanov O. B., Asimptoticheskie otsenki slozhnosti upravlyayuschikh sistem, Izd-vo Mosk. un-ta, M., 1984, 137 pp.

[2] Lozhkin S. A., Vlasov N. V., “O glubine multipleksornoi funktsii”, Materialy IX Mezhdunar. seminara “Diskretnaya matematika i eë prilozheniya” (Moskva, MGU, 18–23 iyunya 2007 g.), Izd-vo mekh.-matem. fak. MGU, M., 2007, 102–105

[3] Rumyantsev P. V., “O slozhnosti realizatsii multipleksornoi funktsii skhemami iz funktsionalnykh elementov”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XIV mezhdunar. konf. (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak. MGU, M., 2005, 133

[4] Lozhkin S. A., Vlasov N. V., “O slozhnosti multipleksornoi funktsii v klasse $\pi$-skhem”, Problemy teoreticheskoi kibernetiki, Tez. dokl. XV mezhdunar. konf. (Kazan, 2–7 iyunya 2008 g.), Otechestvo, Kazan, 2008, 76

[5] Lozhkin S. A., “Otsenki vysokoi stepeni tochnosti dlya slozhnosti upravlyayuschikh sistem iz nekotorykh klassov”, Matem. vopr. kibernetiki, 6, Fizmatlit, M., 1996, 189–214 | MR

[6] Lozhkin S. A., Lektsii po osnovam kibernetiki, Izd. otdel fak. VMiK MGU, M., 2004, 256 pp.

[7] Lipatova A. E., “Ob odnom pokrytii mnozhestva dvoichnykh naborov i realizatsii kon'yunktsii kontaktnymi skhemami”, Matematicheskie voprosy kibernetiki, 2, Fizmatlit, M., 1989, 161–173 | MR

[8] Alekseev V. B., Lozhkin S. A., Elementy teorii grafov, skhem i avtomatov, Izd. otdel fak. VMiK MGU, M., 2000, 58 pp.