Dichotomy for a Class of Quasistationary Random Sequences
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 4, pp. 147-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The concept of probability measures' sequence contiguity is introduced by Le Cam in the research on mathematical statistics for problem of distinguishing close hypotheses. In the present article, this concept is generalised on random sequences, for which theorems of a dichotomy are proved.
Keywords: contiguity of sequences of probability measures, quasistationary random sequences, dichotomy.
@article{UZKU_2008_150_4_a12,
     author = {S. G. Haliullin},
     title = {Dichotomy for {a~Class} of {Quasistationary} {Random} {Sequences}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {147--153},
     year = {2008},
     volume = {150},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/}
}
TY  - JOUR
AU  - S. G. Haliullin
TI  - Dichotomy for a Class of Quasistationary Random Sequences
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 147
EP  - 153
VL  - 150
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/
LA  - ru
ID  - UZKU_2008_150_4_a12
ER  - 
%0 Journal Article
%A S. G. Haliullin
%T Dichotomy for a Class of Quasistationary Random Sequences
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 147-153
%V 150
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/
%G ru
%F UZKU_2008_150_4_a12
S. G. Haliullin. Dichotomy for a Class of Quasistationary Random Sequences. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 4, pp. 147-153. http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/

[1] Le Cam L., “Locally asymptotically normal families of distributions”, Univ. Cflifornia Publ. Statist., 3 (1960), 37–98 | MR | Zbl

[2] Liptser R. Sh., Pukelsheim F., Shiryaev A. N., “O neobkhodimykh i dostatochnykh usloviyakh kontigualnosti i polnoi asimptoticheskoi razdelimosti veroyatnostnykh mer”, Usp. matem. nauk, 37:6 (1982), 97–124 | MR | Zbl

[3] Kakutani S., “On equivalence of infinite products measures”, Ann. of Math., 49 (1948), 214–224 | DOI | MR | Zbl

[4] Feldman J., “Equivalence and perpendiculary of Gaussian Processes”, Pacific J. Math., 8 (1958), 669–708 | MR

[5] Hajek J., “On a property of the normal distribution of an arbitrary stochastic process”, Czechoslovak Math. J., 8 (1958), 610–618 | MR | Zbl

[6] Fernique X., “Comparaison de mesures gaussiennes et de mesures products”, Ann. Inst. H. Poincaré, 20 (1985), 165–175 | MR

[7] Kanter M., “Equivalence-singularity dichotomies for a class of ergodic measures”, Math. Proc. Camb. Phil. Soc., 81 (1977), 249–252 | DOI | MR | Zbl

[8] Okazaki Y., “Equivalent-singular dichotomy for quasiivariant ergodic measures”, Ann. Inst. H. Poincaré, 21:4 (1985), 393–400 | MR | Zbl

[9] Khaliullin S. G., “Dikhotomiya ergodicheskikh mer na lineinykh prostranstvakh”, Matem. zametki, 58:6 (1995), 942–944 | MR | Zbl

[10] Hall W., Loynes R., “On the concept of contiguity”, Ann. of Probab., 5 (1977), 278–282 | DOI | MR | Zbl

[11] Eagleson G. K., “An exended dichotomy theorem for sequences of pairs of Gaussian measures”, Ann. of Probab., 9:3 (1981), 453–459 | DOI | MR | Zbl

[12] Thelen B. J., “Fisher information and dichotomies in equivalence/contiguity”, Ann. of Probab., 17:4 (1989), 1664–1690 | DOI | MR | Zbl

[13] Mushtari D. Kh., Khaliullin S. G., “Lineinye prostranstva s veroyatnostnymi merami, ultraproizvedeniya i kontigualnost”, Izv. vuzov. Matematika, 1992, no. 4, 92–95 | MR | Zbl

[14] Khaliullin S. G., O kontigualnosti i polnoi asimptoticheskoi razdelimosti sluchainykh protsessov, Dep. VINITI No 2221-V92, 1992, 13 pp.

[15] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Nauka, M., 1990, 272 pp. | MR | Zbl

[16] Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983, 336 pp. | MR