@article{UZKU_2008_150_4_a12,
author = {S. G. Haliullin},
title = {Dichotomy for {a~Class} of {Quasistationary} {Random} {Sequences}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {147--153},
year = {2008},
volume = {150},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/}
}
TY - JOUR AU - S. G. Haliullin TI - Dichotomy for a Class of Quasistationary Random Sequences JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2008 SP - 147 EP - 153 VL - 150 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/ LA - ru ID - UZKU_2008_150_4_a12 ER -
S. G. Haliullin. Dichotomy for a Class of Quasistationary Random Sequences. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 4, pp. 147-153. http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a12/
[1] Le Cam L., “Locally asymptotically normal families of distributions”, Univ. Cflifornia Publ. Statist., 3 (1960), 37–98 | MR | Zbl
[2] Liptser R. Sh., Pukelsheim F., Shiryaev A. N., “O neobkhodimykh i dostatochnykh usloviyakh kontigualnosti i polnoi asimptoticheskoi razdelimosti veroyatnostnykh mer”, Usp. matem. nauk, 37:6 (1982), 97–124 | MR | Zbl
[3] Kakutani S., “On equivalence of infinite products measures”, Ann. of Math., 49 (1948), 214–224 | DOI | MR | Zbl
[4] Feldman J., “Equivalence and perpendiculary of Gaussian Processes”, Pacific J. Math., 8 (1958), 669–708 | MR
[5] Hajek J., “On a property of the normal distribution of an arbitrary stochastic process”, Czechoslovak Math. J., 8 (1958), 610–618 | MR | Zbl
[6] Fernique X., “Comparaison de mesures gaussiennes et de mesures products”, Ann. Inst. H. Poincaré, 20 (1985), 165–175 | MR
[7] Kanter M., “Equivalence-singularity dichotomies for a class of ergodic measures”, Math. Proc. Camb. Phil. Soc., 81 (1977), 249–252 | DOI | MR | Zbl
[8] Okazaki Y., “Equivalent-singular dichotomy for quasiivariant ergodic measures”, Ann. Inst. H. Poincaré, 21:4 (1985), 393–400 | MR | Zbl
[9] Khaliullin S. G., “Dikhotomiya ergodicheskikh mer na lineinykh prostranstvakh”, Matem. zametki, 58:6 (1995), 942–944 | MR | Zbl
[10] Hall W., Loynes R., “On the concept of contiguity”, Ann. of Probab., 5 (1977), 278–282 | DOI | MR | Zbl
[11] Eagleson G. K., “An exended dichotomy theorem for sequences of pairs of Gaussian measures”, Ann. of Probab., 9:3 (1981), 453–459 | DOI | MR | Zbl
[12] Thelen B. J., “Fisher information and dichotomies in equivalence/contiguity”, Ann. of Probab., 17:4 (1989), 1664–1690 | DOI | MR | Zbl
[13] Mushtari D. Kh., Khaliullin S. G., “Lineinye prostranstva s veroyatnostnymi merami, ultraproizvedeniya i kontigualnost”, Izv. vuzov. Matematika, 1992, no. 4, 92–95 | MR | Zbl
[14] Khaliullin S. G., O kontigualnosti i polnoi asimptoticheskoi razdelimosti sluchainykh protsessov, Dep. VINITI No 2221-V92, 1992, 13 pp.
[15] Rozanov Yu. A., Statsionarnye sluchainye protsessy, Nauka, M., 1990, 272 pp. | MR | Zbl
[16] Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1983, 336 pp. | MR