$\mathbb R$-linear Conjugation Problem for a Confocal Elliptical Annulas
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 4, pp. 137-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Analytical closed-form solution is presented for $\mathbb R$-linear conjugation problem for a confocal elliptical annulas. Solution is found in the class of piece-wise holomorphic functions with fixed finite value at infinity.
Keywords: heterogeneous media, $\mathbb R$-linear conjugation problem, holomorphic functions.
@article{UZKU_2008_150_4_a11,
     author = {Yu. V. Obnosov},
     title = {$\mathbb R$-linear {Conjugation} {Problem} for {a~Confocal} {Elliptical} {Annulas}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {137--146},
     year = {2008},
     volume = {150},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a11/}
}
TY  - JOUR
AU  - Yu. V. Obnosov
TI  - $\mathbb R$-linear Conjugation Problem for a Confocal Elliptical Annulas
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 137
EP  - 146
VL  - 150
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a11/
LA  - ru
ID  - UZKU_2008_150_4_a11
ER  - 
%0 Journal Article
%A Yu. V. Obnosov
%T $\mathbb R$-linear Conjugation Problem for a Confocal Elliptical Annulas
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 137-146
%V 150
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a11/
%G ru
%F UZKU_2008_150_4_a11
Yu. V. Obnosov. $\mathbb R$-linear Conjugation Problem for a Confocal Elliptical Annulas. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 4, pp. 137-146. http://geodesic.mathdoc.fr/item/UZKU_2008_150_4_a11/

[1] Emets Yu. P., Kraevye zadachi elektrodinamiki anizotropno provodyaschikh sred, Nauk. dumka, Kiev, 1987, 254 pp.

[2] Golubeva O. V., Shpilevoi A. Ya., “O ploskoi filtratsii v sredakh s preryvno izmenyayuscheisya pronitsaemostyu vdol krivykh vtorogo poryadka”, Izv. AN SSSR. MZhG, 1967, no. 2, 174–179

[3] Obnosov Yu. V., “Reshenie zadachi R-lineinogo sopryazheniya v sluchae giperbolicheskoi linii razdeleniya raznorodnykh faz”, Izv. vuzov. Matematika, 2004, no. 7, 53–62 | MR | Zbl

[4] Obnosov Yu. V., “A generalized Milne-Thomson theorem for the case of parabolic inclusion”, Appl. Math. Model., 2009, no. 33, 1970–1981 | DOI | MR

[5] Obnosov Yu. V., Nikonenkova T. V., “Solution of an $\mathbb R$-linear conjugation problem on the case of hyperbolic interface”, Lithuanian Math. J., 48:3 (2008), 322–331 | DOI | MR

[6] Pilatovskii V. P., Osnovy gidromekhaniki tonkogo plasta, Nedra, M., 1966, 315 pp.

[7] Gheorghiţă Şt. I., Metode matematice in hidrogasodinamica subterană, Acad. RSR, Bucureşti, 1966 (in Romanian) | Zbl

[8] Ungureanu E., “Sur le mouvement des fluides dans les milieux poreux non homogènes”, C. r. Acad. sci. A, 268:3 (1969), 181–183 | MR | Zbl

[9] Obdam A. N. V., Veiling E. J. M., “Elliptical inhomogeneities in groundwater flow – an analytical description”, J. Hydrology, 95 (1987), 87–96 | DOI

[10] Obnosov Yu. V., “Reshenie zadachi o raspredelenii filtratsionnykh polei v beskonechnom poristom massive s dvumya krugovymi vklyucheniyami”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 148, no. 2, 2006, 109–123 | Zbl

[11] Maltseva A. M., Obnosov Yu. V., Rogozin S. V., “Obobschenie teoremy Miln-Tomsona na sluchai kontsentricheskogo koltsa”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 148, no. 4, 2006, 35–50

[12] Mikhailov L. G., Novyi klass osobykh integralnykh uravnenii i ego prilozhenie k differentsialnym uravneniyam s singulyarnymi koeffitsientami, Izd-vo AN Tadzh. SSR, Dushanbe, 1963, 183 pp.

[13] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977, 664 pp. | MR