Iterative Solution of the Problem of Liquid Impregnation into Laminated Porous Material
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 3, pp. 88-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of liquid impregnation into laminated porous material is considered. For case with high contrast of layers' thickness and permeability, this problem is formulated as specific free boundary problem. Numerical solution is obtained by the iterative method similarly to the Levi–Civita method in hydrodynamic of an ideal liquid. A comparison of asymptotic analysis results and numerical results is presented.
Keywords: free boundary problems, multiphase mediums, liquid impregnation into porous material, VARTM technology.
@article{UZKU_2008_150_3_a9,
     author = {M. M. Alimov},
     title = {Iterative {Solution} of the {Problem} of {Liquid} {Impregnation} into {Laminated} {Porous} {Material}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {88--103},
     year = {2008},
     volume = {150},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a9/}
}
TY  - JOUR
AU  - M. M. Alimov
TI  - Iterative Solution of the Problem of Liquid Impregnation into Laminated Porous Material
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 88
EP  - 103
VL  - 150
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a9/
LA  - ru
ID  - UZKU_2008_150_3_a9
ER  - 
%0 Journal Article
%A M. M. Alimov
%T Iterative Solution of the Problem of Liquid Impregnation into Laminated Porous Material
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 88-103
%V 150
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a9/
%G ru
%F UZKU_2008_150_3_a9
M. M. Alimov. Iterative Solution of the Problem of Liquid Impregnation into Laminated Porous Material. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 3, pp. 88-103. http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a9/

[1] Hsiao K. T., Mathur R., Gillespie J. W.(jr.), Fink B. K., Advani S. G., “A closed form solution for flow during the vacuum assisted resin transfer molding process”, J. Manuf. Sci. Eng., 122:3 (2000), 463–475 | DOI

[2] Mathur R., Heider D., Hoffmann C., Gillespie J. W.(jr.), Advani S. G., Fink B. K., “Flow front measurements and model validation in the vacuum assisted resin transfer molding process”, Polym. Compos., 22:4 (2001), 477–490 | DOI

[3] Alimov M. M., Kornev K. G., “Impregnation of liquids into a laminated porous material with a high permeability contrast”, Phys. Fluids, 19:10 (2007), 102108-1–102108-11 | DOI | Zbl

[4] Muskat M., The Flow of Homogeneous Fluids through Porous Media, I. W. Edwards, Inc., Ann Arbor, Michigan, 1946; Masket M., Techenie odnorodnykh zhidkostei v poristoi srede, Gostoptekhizdat, M.–L., 1949, 628 pp.

[5] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka, M., 1977, 664 pp. | MR

[6] Saffman P. G., Taylor G. I., “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid”, Proc. Roy. Soc. London. Ser. A, 245:1242 (1958), 312–329 | DOI | MR | Zbl

[7] Gurevich M. I., Teoriya strui idealnoi zhidkosti, Nauka, M., 1979, 536 pp. | Zbl

[8] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp. | MR

[9] Koppenfels W., Stalman F., Praxis der Konformen Abbildung, Springer, Berlin, 1959 ; Koppenfels V., Shtalman Ts., Praktika konformnogo otobrazheniya, IL, M., 1963, 406 pp. | MR | Zbl