Isometry Group of Superfluids
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 3, pp. 79-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A space-time with geometry determined by superfluid energy-momentum tensor is considered. Groups of isometry are investigated under the assumption that movements of superfluid and normal components are directed along different Killing vector fields. It is shown that operators generated by the Killing vectors associated with the superfluid and normal flow constitute the center of Lie algebra. All possible groups of isometry satisfying this condition are specified and investigated. A unique gravitational field is shown to exist, admitting the isometry group of order $r\ge4$.
Keywords: relativistic superfluid dynamics, groups of motions, exact solutions of Einstein's equations.
@article{UZKU_2008_150_3_a8,
     author = {A. A. Litvinov and V. A. Popov},
     title = {Isometry {Group} of {Superfluids}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {79--87},
     year = {2008},
     volume = {150},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a8/}
}
TY  - JOUR
AU  - A. A. Litvinov
AU  - V. A. Popov
TI  - Isometry Group of Superfluids
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 79
EP  - 87
VL  - 150
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a8/
LA  - ru
ID  - UZKU_2008_150_3_a8
ER  - 
%0 Journal Article
%A A. A. Litvinov
%A V. A. Popov
%T Isometry Group of Superfluids
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 79-87
%V 150
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a8/
%G ru
%F UZKU_2008_150_3_a8
A. A. Litvinov; V. A. Popov. Isometry Group of Superfluids. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 3, pp. 79-87. http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a8/

[1] Chernikov N. A., Relyativistskii gaz v gravitatsionnom pole, Preprint No 1027, OIYaI, Dubna, 1962, 32 pp.

[2] Chernikov N. A., Ravnovesnoe raspredelenie relyativistskogo gaza, Preprint No 1159, OIYaI, Dubna, 1962, 28 pp.

[3] Ozsvath I., “Homogenous solutions of Einstein-Maxwell equations”, J. Math. Phys., 6 (1965), 1255–1264 | DOI | MR

[4] Hiromoto R. E., Ozsvath I., “On homogenous solutions of Einstein's field equations”, Gen. Relat. and Gravit., 9 (1979), 299–306 | DOI | MR

[5] Ivanov G. G., Daishev R. A., “Makroskopicheskie dvizheniya idealnogo gaza i simmetrii prostranstva-vremeni”, Gravitatsiya i teoriya otnositelnosti, 1978, no. 14, 74–79, Izd-vo Kazan. un-ta, Kazan

[6] Daishev R. A., “Izometricheskie dvizheniya idealnoi zaryazhennoi zhidkosti”, Izv. vuzov. Fizika, 1987, no. 10, 25–30 | MR

[7] Popov V., “Relativistic Kinetic Theory of Phonon Gas in Superfluids”, Gen. Relat. and Gravit., 38 (2006), 917–935 | DOI | MR | Zbl

[8] Silverman M. P., Mallett R. L., “Coherent degenerate dark matter: a galactic superfluid?”, Class. and Quantum Grav., 18 (2001), L103–L108 | DOI | Zbl

[9] Ferrer F., Grifols J. A., “Bose-Einstein Condensation, Dark Matter and Acoustic Peaks”, J. Cosmology and Astroparticle Phys., 0412 (2004), 012–024 | DOI

[10] Lebedev V. V., Khalatnikov I. M., “Relyativistskaya gidrodinamika sverkhtekuchei zhidkosti”, ZhETF, 83 (1982), 1601–1614

[11] Carter B., Khalatnikov I. M., “Equivalence of convective and potential variational derivations of covariant superfluid dynamics”, Phys. Rev. D., 45 (1992), 4536–4544 | DOI | MR

[12] Carter B., Langlois D., “Equation of state for cool relativistic two-constituent superfluid dynamics”, Phys. Rev. D., 51 (1995), 5855–5864 | DOI

[13] Sing Dzh., Obschaya teoriya otnositelnosti, IL, M., 1963, 432 pp.

[14] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 496 pp. | MR

[15] Tajmar M., “A note on the local cosmological constant and the dark energy coincidence problem”, Class. and Quantum Grav., 23 (2006), 5079–5083 | DOI | MR | Zbl

[16] Dutta S., Maor I., “Voids of dark energy”, Phys. Rev. D, 75 (2007), 063507 | DOI