On Approximative Methods for Solving Quasi-Variational Inequalities of the Soft Network Shells Theory
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 3, pp. 104-116 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article investigates the convergence of the finite element schemes for the problem of finding an equilibrium position of a soft network shells subjected to mass forces and following surface load. The convergence proof is based on constructing an iterative method of solving the finite dimensional approximation of quasi-variational inequality arising by mathematical formulation of the problem considered.
Keywords: quasi-variational inequalities, soft network shells, finite element method, iterative methods.
@article{UZKU_2008_150_3_a10,
     author = {I. B. Badriev and V. V. Banderov and O. A. Zadvornov},
     title = {On {Approximative} {Methods} for {Solving} {Quasi-Variational} {Inequalities} of the {Soft} {Network} {Shells} {Theory}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {104--116},
     year = {2008},
     volume = {150},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a10/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - V. V. Banderov
AU  - O. A. Zadvornov
TI  - On Approximative Methods for Solving Quasi-Variational Inequalities of the Soft Network Shells Theory
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 104
EP  - 116
VL  - 150
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a10/
LA  - ru
ID  - UZKU_2008_150_3_a10
ER  - 
%0 Journal Article
%A I. B. Badriev
%A V. V. Banderov
%A O. A. Zadvornov
%T On Approximative Methods for Solving Quasi-Variational Inequalities of the Soft Network Shells Theory
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 104-116
%V 150
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a10/
%G ru
%F UZKU_2008_150_3_a10
I. B. Badriev; V. V. Banderov; O. A. Zadvornov. On Approximative Methods for Solving Quasi-Variational Inequalities of the Soft Network Shells Theory. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 3, pp. 104-116. http://geodesic.mathdoc.fr/item/UZKU_2008_150_3_a10/

[1] Badriev I. B., Zadvornov O. A., Banderov V. V., “Postanovka i issledovanie statsionarnykh zadach teorii myagkikh obolochek s nevypuklym dostizhimym mnozhestvom”, Issled. po prikladnoi matem. i informatike, 23, Izd-vo Kazan. matem. ob-va, Kazan, 2001, 3–7 | MR

[2] Badriev I. B., Banderov V. V., Zadvornov O. A., “Issledovanie zadachi o kontakte niti s prepyatstviem”, Issled. po prikladnoi matem. i informatike, 24, Kazan. gos. un-t, Kazan, 2003, 3–11

[3] Badriev I. B., Banderov V. V., Zadvornov O. A., “O konechnomernykh approksimatsiyakh kvazivariatsionnykh neravenstv”, Issled. po prikladnoi matem. i informatike, 26, Izd-vo Kazan. matem. ob-va, Kazan, 2006, 34–41

[4] Zadvornov O. A., “O skhodimosti iteratsionnogo metoda resheniya kvazivariatsionnogo neravenstva”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Pyatogo Vseros. seminara, Kazan. gos. un-t, Kazan, 2004, 71–75

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp. | MR

[6] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR

[7] Ridel V. V., Gulin B. V., Dinamika myagkikh obolochek, Nauka, M., 1990, 206 pp. | MR | Zbl

[8] Badriev I. B., Shagidullin R. R., “Klassicheskie i obobschennye resheniya uravnenii odnoosnogo staticheskogo sostoyaniya myagkoi obolochki”, Setochnye metody resheniya differents. uravnenii, Izd-vo Kazan. un-ta, Kazan, 1986, 14–28

[9] Badriev I. B., Zadvornov O. A., “Issledovanie razreshimosti statsionarnykh zadach dlya setchatykh obolochek”, Izv. vuzov. Matematika, 1992, no. 11, 3–7 | MR | Zbl

[10] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp. | MR

[11] Badriev I. B., Zadvornov O. A., “Issledovanie skhodimosti iteratsionnogo protsessa dlya uravnenii s vyrozhdayuschimisya operatorami”, Differents. uravneniya, 32:7 (1996), 898–901 | MR | Zbl

[12] Badriev I. B., Zadvornov O. A., “O silnoi skhodimosti iteratsionnogo metoda dlya operatorov s vyrozhdeniem”, Zhurn. vychisl. matem. i matem. fiziki, 37:12 (1997), 1424–1426 | MR | Zbl

[13] Lyashko A. D., Karchevskii M. M., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izv. vuzov. Matematika, 1975, no. 6, 73–81 | Zbl