Equations with Dual Convolution Wiener–Hopf Operators
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 102-106
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              A class of equations with dual convolution Wiener–Hopf operators is considered. The investigation is carried out in the space of generalized functions, admitting analytical presentations (Cauchy presentations). Equations of the considered class are equivalent to a boundary value problem regarding the disappearing at infinity piecewise-holomorphic function $\widehat\Phi(z)=(\widehat\Phi^+(z),\widehat\Phi^-(z))$. Boundary condition is given on the real axis $\mathbb R$ and is understood in the sense of generalized functions. The considered equations are reduced to some isomorphic equations by means of Fourier transformation in space of tempered generalized functions. The latter, according to hypothesis of generalized functions regularity, include bilateral and unilateral Wiener–Hopf equations, dual integral equations with constant and variable limits, and dual ordinary differential equations.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
dual convolution operator, generalized function, analytical presentation, partly-holomorphic function, dual integral equations, dual ordinary differential equations.
                    
                  
                
                
                @article{UZKU_2008_150_1_a9,
     author = {L. G. Salekhov and L. L. Salekhova},
     title = {Equations with {Dual} {Convolution} {Wiener{\textendash}Hopf} {Operators}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {102--106},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a9/}
}
                      
                      
                    TY - JOUR AU - L. G. Salekhov AU - L. L. Salekhova TI - Equations with Dual Convolution Wiener–Hopf Operators JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2008 SP - 102 EP - 106 VL - 150 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a9/ LA - ru ID - UZKU_2008_150_1_a9 ER -
%0 Journal Article %A L. G. Salekhov %A L. L. Salekhova %T Equations with Dual Convolution Wiener–Hopf Operators %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2008 %P 102-106 %V 150 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a9/ %G ru %F UZKU_2008_150_1_a9
L. G. Salekhov; L. L. Salekhova. Equations with Dual Convolution Wiener–Hopf Operators. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 102-106. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a9/
