Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 91-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper proves solvability of a Gakhov equation analogue for external mixed inverse boundary value problem on a Riemann surface. The surface is supposed to contain a unique simple branch-point over the infinity. The proof method uses technique of vector field rotation.
Keywords: mixed inverse boundary value problem, Gakhov equation, vector field rotation, Riemann surface.
@article{UZKU_2008_150_1_a8,
     author = {S. R. Nasyrov and L. Yu. Nizamieva},
     title = {Gakhov {Equation} for {Mixed} {Inverse} {Boundary} {Value} {Problem} on {Riemann} {Surface} with {a~Simple} {Branch-Point} over {Infinity}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {91--101},
     year = {2008},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/}
}
TY  - JOUR
AU  - S. R. Nasyrov
AU  - L. Yu. Nizamieva
TI  - Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 91
EP  - 101
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/
LA  - ru
ID  - UZKU_2008_150_1_a8
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%A L. Yu. Nizamieva
%T Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 91-101
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/
%G ru
%F UZKU_2008_150_1_a8
S. R. Nasyrov; L. Yu. Nizamieva. Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/

[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazan. un-ta, Kazan, 1965, 333 pp. | MR

[2] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matematika, 1984, no. 2, 3–11 | MR

[3] Aksentev L. A., Elizarov A. M., Kinder M. I., “Obratnye kraevye zadachi dlya mnogosvyaznykh oblastei na rimanovykh poverkhnostyakh roda nul, I”, Tr. seminara po kraevym zadacham, Izd-vo Kazan. un-ta, Kazan, 1984, 19–32 ; “II”, 1985, 16–29 ; “III”, 1987, 25–36 | MR | MR | MR

[4] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977, 424 pp. | MR

[5] Nasyrov S. R., O metode poligonalnoi approksimatsii v smeshannykh obratnykh kraevykh zadachakh po parametru $x$, Dep. v VINITI 17.05.82, No 2459-82, Kazan. gos. un-t, Kazan, 1982, 48 pp.

[6] Nasyrov S. R., “Smeshannaya obratnaya kraevaya zadacha na rimanovykh poverkhnostyakh”, Izv. vuzov. Matematika, 1990, no. 10, 25–36 | MR | Zbl

[7] Nasyrov S. R., Faizov I. Z. pLokalnaya edinstvennost resheniya smeshannoi obratnoi kraevoi zadachi na poligonalnykh rimanovykh poverkhnostyakh s prostymi tochkami vetvleniya, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 148, kn. 2 (2006), 97–108 | Zbl

[8] Galiullina G. R., Nasyrov S. R., “Uravnenie Gakhova dlya vneshnei smeshannoi obratnoi kraevoi zadachi po parametru $x$”, Izv. vuzov. Matematika, 2002, no. 10, 48–55 | MR | Zbl

[9] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[10] Krasnoselskii M. A. i dr., Vektornye polya na ploskosti, Fizmatgiz, M., 1963 | MR