@article{UZKU_2008_150_1_a8,
author = {S. R. Nasyrov and L. Yu. Nizamieva},
title = {Gakhov {Equation} for {Mixed} {Inverse} {Boundary} {Value} {Problem} on {Riemann} {Surface} with {a~Simple} {Branch-Point} over {Infinity}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {91--101},
year = {2008},
volume = {150},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/}
}
TY - JOUR AU - S. R. Nasyrov AU - L. Yu. Nizamieva TI - Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2008 SP - 91 EP - 101 VL - 150 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/ LA - ru ID - UZKU_2008_150_1_a8 ER -
%0 Journal Article %A S. R. Nasyrov %A L. Yu. Nizamieva %T Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2008 %P 91-101 %V 150 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/ %G ru %F UZKU_2008_150_1_a8
S. R. Nasyrov; L. Yu. Nizamieva. Gakhov Equation for Mixed Inverse Boundary Value Problem on Riemann Surface with a Simple Branch-Point over Infinity. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 91-101. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a8/
[1] Tumashev G. G., Nuzhin M. T., Obratnye kraevye zadachi i ikh prilozheniya, Izd-vo Kazan. un-ta, Kazan, 1965, 333 pp. | MR
[2] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matematika, 1984, no. 2, 3–11 | MR
[3] Aksentev L. A., Elizarov A. M., Kinder M. I., “Obratnye kraevye zadachi dlya mnogosvyaznykh oblastei na rimanovykh poverkhnostyakh roda nul, I”, Tr. seminara po kraevym zadacham, Izd-vo Kazan. un-ta, Kazan, 1984, 19–32 ; “II”, 1985, 16–29 ; “III”, 1987, 25–36 | MR | MR | MR
[4] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977, 424 pp. | MR
[5] Nasyrov S. R., O metode poligonalnoi approksimatsii v smeshannykh obratnykh kraevykh zadachakh po parametru $x$, Dep. v VINITI 17.05.82, No 2459-82, Kazan. gos. un-t, Kazan, 1982, 48 pp.
[6] Nasyrov S. R., “Smeshannaya obratnaya kraevaya zadacha na rimanovykh poverkhnostyakh”, Izv. vuzov. Matematika, 1990, no. 10, 25–36 | MR | Zbl
[7] Nasyrov S. R., Faizov I. Z. pLokalnaya edinstvennost resheniya smeshannoi obratnoi kraevoi zadachi na poligonalnykh rimanovykh poverkhnostyakh s prostymi tochkami vetvleniya, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 148, kn. 2 (2006), 97–108 | Zbl
[8] Galiullina G. R., Nasyrov S. R., “Uravnenie Gakhova dlya vneshnei smeshannoi obratnoi kraevoi zadachi po parametru $x$”, Izv. vuzov. Matematika, 2002, no. 10, 48–55 | MR | Zbl
[9] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR
[10] Krasnoselskii M. A. i dr., Vektornye polya na ploskosti, Fizmatgiz, M., 1963 | MR