Formalization of Computations at Numerical Solution of Boundary Value Problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 76-90
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper represents a new robust multigrid technique for solving boundary value problems in black box manner. To overcome problem of robustness, the technique was based on incorporating the adaptation of boundary value problems to numerical methods, control volume discretisation and a new multigrid solver into a united computational algorithm. Special multiple coarse grid correction strategy makes it possible to obtain problem-independent transfer operators. As a result, the most of the modes are approximated on coarse grids in order to ensure the problem of smoothing on the finest grid to be the least demanding. Detailed description of the robust multigrid technique and examples of application for solving benchmark problems are given in the paper.
Keywords: boundary value problem, multigrid methods, finite element method, numerical experiment.
@article{UZKU_2008_150_1_a7,
     author = {S. I. Martynenko},
     title = {Formalization of {Computations} at {Numerical} {Solution} of {Boundary} {Value} {Problems}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {76--90},
     year = {2008},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a7/}
}
TY  - JOUR
AU  - S. I. Martynenko
TI  - Formalization of Computations at Numerical Solution of Boundary Value Problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 76
EP  - 90
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a7/
LA  - ru
ID  - UZKU_2008_150_1_a7
ER  - 
%0 Journal Article
%A S. I. Martynenko
%T Formalization of Computations at Numerical Solution of Boundary Value Problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 76-90
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a7/
%G ru
%F UZKU_2008_150_1_a7
S. I. Martynenko. Formalization of Computations at Numerical Solution of Boundary Value Problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 76-90. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a7/

[1] Wesseling P., An Introduction to Multigrid Methods, Wiley, Chichester, 1991, 284 pp. | MR

[2] Fedorenko R. P., “Relaksatsionnyi metod resheniya raznostnykh ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | MR | Zbl

[3] Fedorenko R. P., “Skorost skhodimosti odnogo iteratsionnogo metoda”, Zhurn. vychisl. matem. i matem. fiz., 4:3 (1964), 227–235

[4] Bakhvalov N. S., “O skhodimosti odnogo relaksatsionnogo metoda pri estestvennykh ogranicheniyakh na ellipticheskii operator”, Zhurn. vychisl. matem. i matem. fiz., 6:5 (1966), 861–883 | Zbl

[5] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989, 288 pp. | MR

[6] Olshanskii M. A., Lektsii i uprazhneniya po mnogosetochnym metodam, FIZMALIT, M., 2005, 168 pp. | Zbl

[7] Dendy J. E.(jr.), “Black box multigrid”, J. Comput. Phys., 48 (1982), 366–386 | DOI | MR | Zbl

[8] Dendy J. E.(jr.), “Black box multigrid for systems”, Appl. Math. Comp., 19 (1986), 57–74 | DOI | MR | Zbl

[9] Martynenko S. I., “Robust Multigrid Technique for black box software”, Comp. Meth. in Appl. Math., 6:4 (2006), 413–435 | MR | Zbl

[10] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983, 616 pp. | MR

[12] Martynenko S. I., “Universalnaya mnogosetochnaya tekhnologiya dlya chislennogo resheniya kraevykh zadach na strukturirovannykh setkakh”, Vychislitelnye metody i programmirovanie, 1, razdel 1 (2000), 85–104