Diffraction of the Electromagnetic Wave on System of Parallel Metal Screens
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 38-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper views the problem of diffraction of the two-dimensional $TE$-polarised electromagnetic wave on the metal plates located in two parallel planes. The initial problem is reduced to a system of integral equations with logarithmic singularity in kernels as related to jumps of the magnetic field at transition through metal screens. The received system is solved numerically by a Galerkin method with basic functions — Chebyshev polynoms. Graphics of scattered field energy density have been constructed for diffraction problems on two plates posed nearby and one over the other. The uniqueness theorem of the problem of diffraction in space $\mathrm H_1^{\mathrm{ loc}}(\mathbb{R}^2)$ is proved.
Mots-clés : diffraction
Keywords: $TE$-polarised electromagnetic wave, equation with logarithmic singularity, Galerkin method, Chebyshev polynoms, uniqueness theorem.
@article{UZKU_2008_150_1_a3,
     author = {A. N. Gordeeva and D. N. Tumakov},
     title = {Diffraction of the {Electromagnetic} {Wave} on {System} of {Parallel} {Metal} {Screens}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {38--55},
     year = {2008},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a3/}
}
TY  - JOUR
AU  - A. N. Gordeeva
AU  - D. N. Tumakov
TI  - Diffraction of the Electromagnetic Wave on System of Parallel Metal Screens
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 38
EP  - 55
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a3/
LA  - ru
ID  - UZKU_2008_150_1_a3
ER  - 
%0 Journal Article
%A A. N. Gordeeva
%A D. N. Tumakov
%T Diffraction of the Electromagnetic Wave on System of Parallel Metal Screens
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 38-55
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a3/
%G ru
%F UZKU_2008_150_1_a3
A. N. Gordeeva; D. N. Tumakov. Diffraction of the Electromagnetic Wave on System of Parallel Metal Screens. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 38-55. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a3/

[1] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh (Psevdodifferentsialnye operatory v zadachakh difraktsii), IPRZhR, M., 1996, 176 pp.

[2] Miller E. K., Medgyesi-Mitschand L., Newman E.H., Computational electromagnetics: Frequency-domain method of moments, IEEE Press, N.Y., 1992, 508 pp.

[3] Shestopalov V. P., Metod zadachi Rimana – Gilberta v teorii difraktsii i rasprostraneniya elektromagnitnykh voln, Izd-vo Khark. un-ta, Kharkov, 1971, 400 pp.

[4] Pleschinskii I. N., Pleschinskii N. B., “Integralnye uravneniya zadachi sopryazheniya poluotkrytykh dielektricheskikh volnovodov”, Izv. vuzov. Matematika, 2007, no. 5, 63–80

[5] Pleschinskii N. B., Tumakov D. N., Metod chastichnykh oblastei dlya skalyarnykh koordinatnykh zadach difraktsii elektromagnitnykh voln v klassakh obobschennykh funktsii, Preprint PMF-2000-01, Kazan. matem. o-vo, Kazan, 2000, 50 pp. | MR

[6] Pleschinskii N. B., Uravnenie Gelmgoltsa v poluploskosti i skalyarnye zadachi difraktsii elektromagnitnykh voln na ploskikh metallicheskikh ekranakh, Preprint PMF-03-02, Izd-vo Kazansk. matem. ob-va, Kazan, 2003, 34 pp.

[7] Makher A., Pleschinskii N. B., “Zadacha o skachke dlya uravneniya Gelmgoltsa v ploskosloistoi srede i ee prilozheniya”, Izv. vuzov. Matematika, 2002, no. 1, 45–56 | MR | Zbl

[8] Khenl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964, 428 pp.

[9] Pleschinskii N. B., “Ob integralnykh uravneniyakh pervogo roda s logarifmicheskoi osobennostyu v yadre i metodakh ikh regulyarizatsii”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 17, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, Kazan. matem. ob-vo, Kazan, 2002, 90–120 | MR

[10] Pleschinskaya I. E., Pleschinskii N. B., “Pereopredelennye granichnye zadachi dlya ellipticheskikh uravnenii s chastnymi proizvodnymi i ikh primenenie v teorii difraktsii voln”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 147:3 (2005), 4–32

[11] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966, 352 pp. | MR | Zbl