Combinatorial Lemma for Lebesgue–Brouwer Partition of Cube on Euclidean Space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 124-129
Cet article a éte moissonné depuis la source Math-Net.Ru
The purpose of this article is to present a new combinatorial lemma that can be used in fixed point theorem, for example, to prove Brouwer theorem. Partition of a three-dimensional cube used by Lebesgue and Brouwer in dimension theory is taken into consideration. Explanation is given for generalization of the lemma on Euclidean $n$-space, $n>3$.
Keywords:
combinatorial lemma, fixed point theorem.
@article{UZKU_2008_150_1_a12,
author = {R. R. Shagidullin},
title = {Combinatorial {Lemma} for {Lebesgue{\textendash}Brouwer} {Partition} of {Cube} on {Euclidean} {Space}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {124--129},
year = {2008},
volume = {150},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a12/}
}
TY - JOUR AU - R. R. Shagidullin TI - Combinatorial Lemma for Lebesgue–Brouwer Partition of Cube on Euclidean Space JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2008 SP - 124 EP - 129 VL - 150 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a12/ LA - ru ID - UZKU_2008_150_1_a12 ER -
%0 Journal Article %A R. R. Shagidullin %T Combinatorial Lemma for Lebesgue–Brouwer Partition of Cube on Euclidean Space %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2008 %P 124-129 %V 150 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a12/ %G ru %F UZKU_2008_150_1_a12
R. R. Shagidullin. Combinatorial Lemma for Lebesgue–Brouwer Partition of Cube on Euclidean Space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 124-129. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a12/
[1] Prasolov V. V., Elementy kombinatornoi i differentsialnoi topologii, Izd-vo MTsNMO, M., 2004, 352 pp.