On Resolving Boundary Value Problems of Nonlinear Theory for Timoshenko Types Shallow Shells
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 115-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is devoted to proving the existence of solutions of geometrically nonlinear boundary value problem for Timoshenko type shallow shells which take into account the deformations of cross displacements. Equilibrium equations are reduced to a system of nonlinear singular integral equations on flat region, the resolution of which is established with the help of compressed reflections principle.
Keywords: boundary value problem, Timoshenko type shallow shells, equilibrium equations, generalized solution, operator, integral equations, compressed reflections principle.
@article{UZKU_2008_150_1_a11,
     author = {S. N. Timergaliev},
     title = {On {Resolving} {Boundary} {Value} {Problems} of {Nonlinear} {Theory} for {Timoshenko} {Types} {Shallow} {Shells}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {115--123},
     year = {2008},
     volume = {150},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a11/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On Resolving Boundary Value Problems of Nonlinear Theory for Timoshenko Types Shallow Shells
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2008
SP  - 115
EP  - 123
VL  - 150
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a11/
LA  - ru
ID  - UZKU_2008_150_1_a11
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On Resolving Boundary Value Problems of Nonlinear Theory for Timoshenko Types Shallow Shells
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2008
%P 115-123
%V 150
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a11/
%G ru
%F UZKU_2008_150_1_a11
S. N. Timergaliev. On Resolving Boundary Value Problems of Nonlinear Theory for Timoshenko Types Shallow Shells. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 150 (2008) no. 1, pp. 115-123. http://geodesic.mathdoc.fr/item/UZKU_2008_150_1_a11/

[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 376 pp. | MR

[2] Vorovich I. I., Lebedev L. P., “Nekotorye voprosy mekhaniki sploshnoi sredy i matematicheskie problemy teorii tonkostennykh konstruktsii”, Prikladnaya mekhanika, 38:4 (2002), 3–20 | MR | Zbl

[3] Karchevskii M. M., “Nelineinye zadachi teorii plastin i obolochek i ikh setochnye approksimatsii”, Izv. vuzov. Matematika, 1985, no. 10, 17–30 | MR

[4] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1196–1203 | MR

[5] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Dis. $\ldots$ d-ra fiz.-matem. nauk, Kazan, 2003, 340 pp. | Zbl

[6] Galimov K. Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazan. un-ta, Kazan, 1975, 326 pp. | MR

[7] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 512 pp. | MR | Zbl

[8] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956, 392 pp. | MR