Voir la notice du chapitre de livre
@article{UZKU_2007_149_4_a5,
author = {L. L. Glazyrina and M. F. Pavlova},
title = {On uniqueness of the solution of a~variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {73--89},
year = {2007},
volume = {149},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/}
}
TY - JOUR AU - L. L. Glazyrina AU - M. F. Pavlova TI - On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2007 SP - 73 EP - 89 VL - 149 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/ LA - ru ID - UZKU_2007_149_4_a5 ER -
%0 Journal Article %A L. L. Glazyrina %A M. F. Pavlova %T On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2007 %P 73-89 %V 149 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/ %G ru %F UZKU_2007_149_4_a5
L. L. Glazyrina; M. F. Pavlova. On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 73-89. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/
[1] Antontsev S. N., Meiermanov A. M., Matematicheskie modeli sovmestnogo dvizheniya poverkhnostnykh i podzemnykh vod, Novosibirsk, 1979, 80 pp. | Zbl
[2] Glazyrina L. L., Pavlova M. F., “O razreshimosti odnogo nelineinogo evolyutsionnogo neravenstva teorii sovmestnogo dvizheniya poverkhnostnykh i podzemnykh vod”, Izv. vuzov. Matematika, 1997, no. 4, 20–31 | MR | Zbl
[3] Otto F., “L-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equation”, Reprinted for Journal of J. Different. Equat., 131, no. 1, Academic Press, New York–London, 1996, 20–38 | DOI | MR
[4] Otto F., “L-Contraction and Uniqueness for unstationarisaturated-unsaturated porous media flow”, Adv. Math. Sci. Appl., 7:2 (1997), 537–553 | MR | Zbl
[5] Glazyrina L. L., Pavlova M. F., “Teorema o edinstvennosti resheniya odnoi zadachi teorii sovmestnogo dvizheniya ruslovykh i podzemnykh vod”, Izv. vuzov. Matematika, 2000, no. 11, 12–25 | MR | Zbl