On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 73-89
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The considered problem is a double degenerate problem. The special feature of the investigated problem is also the nonlocal boundary condition on the inner slit of the domain. The uniqueness theorem for the first boundary value problem for variational inequality with nonhomogeneous bound on the solution is proved.
@article{UZKU_2007_149_4_a5,
     author = {L. L. Glazyrina and M. F. Pavlova},
     title = {On uniqueness of the solution of a~variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {73--89},
     year = {2007},
     volume = {149},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/}
}
TY  - JOUR
AU  - L. L. Glazyrina
AU  - M. F. Pavlova
TI  - On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2007
SP  - 73
EP  - 89
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/
LA  - ru
ID  - UZKU_2007_149_4_a5
ER  - 
%0 Journal Article
%A L. L. Glazyrina
%A M. F. Pavlova
%T On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2007
%P 73-89
%V 149
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/
%G ru
%F UZKU_2007_149_4_a5
L. L. Glazyrina; M. F. Pavlova. On uniqueness of the solution of a variational inequality of the coupled movement of the underground and surface waters theory with nonhomogeneous bounds and nonhomogeneous boundary conditions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 73-89. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a5/

[1] Antontsev S. N., Meiermanov A. M., Matematicheskie modeli sovmestnogo dvizheniya poverkhnostnykh i podzemnykh vod, Novosibirsk, 1979, 80 pp. | Zbl

[2] Glazyrina L. L., Pavlova M. F., “O razreshimosti odnogo nelineinogo evolyutsionnogo neravenstva teorii sovmestnogo dvizheniya poverkhnostnykh i podzemnykh vod”, Izv. vuzov. Matematika, 1997, no. 4, 20–31 | MR | Zbl

[3] Otto F., “L-Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equation”, Reprinted for Journal of J. Different. Equat., 131, no. 1, Academic Press, New York–London, 1996, 20–38 | DOI | MR

[4] Otto F., “L-Contraction and Uniqueness for unstationarisaturated-unsaturated porous media flow”, Adv. Math. Sci. Appl., 7:2 (1997), 537–553 | MR | Zbl

[5] Glazyrina L. L., Pavlova M. F., “Teorema o edinstvennosti resheniya odnoi zadachi teorii sovmestnogo dvizheniya ruslovykh i podzemnykh vod”, Izv. vuzov. Matematika, 2000, no. 11, 12–25 | MR | Zbl