Numerical solution of strong nonlinear deformation problems in Euler's coordinates
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 45-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Numerical solution of problem of strong nonlinear deformation using method of solution continuation with respect to a parameter is considered. Euler's coordinates are used. Numerical results demonstrate efficiency of the approach.
@article{UZKU_2007_149_4_a3,
     author = {M. S. Agapov and E. B. Kuznetsov and V. I. Shalashilin},
     title = {Numerical solution of strong nonlinear deformation problems in {Euler's} coordinates},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {45--57},
     year = {2007},
     volume = {149},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a3/}
}
TY  - JOUR
AU  - M. S. Agapov
AU  - E. B. Kuznetsov
AU  - V. I. Shalashilin
TI  - Numerical solution of strong nonlinear deformation problems in Euler's coordinates
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2007
SP  - 45
EP  - 57
VL  - 149
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a3/
LA  - ru
ID  - UZKU_2007_149_4_a3
ER  - 
%0 Journal Article
%A M. S. Agapov
%A E. B. Kuznetsov
%A V. I. Shalashilin
%T Numerical solution of strong nonlinear deformation problems in Euler's coordinates
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2007
%P 45-57
%V 149
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a3/
%G ru
%F UZKU_2007_149_4_a3
M. S. Agapov; E. B. Kuznetsov; V. I. Shalashilin. Numerical solution of strong nonlinear deformation problems in Euler's coordinates. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 4, pp. 45-57. http://geodesic.mathdoc.fr/item/UZKU_2007_149_4_a3/

[1] Novozhilov V. V., Teoriya uprugosti, Sudpromgiz, L., 1958, 370 pp.

[2] Shalashilin V. I., Kuznetsov E. B., Metod prodolzheniya resheniya po parametru i nailuchshaya parametrizatsiya v prikladnoi matematike i mekhanike, Editorial URSS, M., 1999, 222 pp. | MR

[3] Shalashilin V. I., Kuznetsov E. B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Kluwer Academic Publishers, Dordrecht–Boston–London, 2003, 236 pp. | MR | Zbl

[4] Sedov L. I., Mekhanika sploshnoi sredy, v. 1, Nauka, M., 1970, 492 pp. | MR

[5] Ilyushin A. A., Mekhanika sploshnoi sredy, Izd-vo Mosk. un-ta, M., 1971, 248 pp.

[6] Goldenblat I. I., Nelineinye problemy teorii uprugosti, Nauka, M., 1969, 336 pp. | MR

[7] Lure A. I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp. | MR

[8] Danilin A. N., Shalashilin V. I., “O parametrizatsii nelineinykh uravnenii deformirovaniya tverdogo tela”, Izv. RAN. Mekhanika tverdogo tela, 2000, no. 1, 82–92

[9] Paimushin V. N., Shalashilin V. I., “Neprotivorechivyi variant teorii deformatsii sploshnykh sred v kvadratichnom priblizhenii”, Dokl. RAN, 396:4 (2004), 492–495 | MR

[10] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987, 600 pp. | MR | Zbl