Giant magnetoresistance of nanoscale ferromagnetic heterocontacts
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 3, pp. 5-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The first part of the paper is devoted to theoretical study of magnetoresistance in point nanocontacts between non-identical ferromagnetic metals in the quasiclassical approach. The dependence of magnetoresistance on size of nanocontacts and the electron mean free path is investigated. The thickness of the domain wall in nanocontacts was considered equal to the contact length. The case of a dielectric oxide layer possible presence between contacting metals is also considered. The tunelling magnetoresistance is calculated, and its dependence on the applied voltage and the electron mean free path is studied. The results of calculations agree fairly well with the known experimental data. In the second part of the paper, the theory of quantized conductance of atomic size nanocontacts is studied in the context of quantum theory of scattering which accounts for reversal of the electron spin. The exact solution of the Schrodinger equation for a particle moving in the linear potential is used as a zero approximation. The difference between the actual potential of domain wall and the linear potential is considered as a perturbation to calculate the spin-conserving and spin-flip conductances of nanocontacts. It is shown for the first time that the conductance with the spin-flip imposes natural constraint on the infinite growth of magnetoresistance upon decreasing the nanocontact size.
@article{UZKU_2007_149_3_a0,
     author = {A. N. Useinov and L. R. Tagirov and R. G. Deminov and N. Kh. Useinov},
     title = {Giant magnetoresistance of nanoscale ferromagnetic heterocontacts},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--30},
     year = {2007},
     volume = {149},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a0/}
}
TY  - JOUR
AU  - A. N. Useinov
AU  - L. R. Tagirov
AU  - R. G. Deminov
AU  - N. Kh. Useinov
TI  - Giant magnetoresistance of nanoscale ferromagnetic heterocontacts
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2007
SP  - 5
EP  - 30
VL  - 149
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a0/
LA  - ru
ID  - UZKU_2007_149_3_a0
ER  - 
%0 Journal Article
%A A. N. Useinov
%A L. R. Tagirov
%A R. G. Deminov
%A N. Kh. Useinov
%T Giant magnetoresistance of nanoscale ferromagnetic heterocontacts
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2007
%P 5-30
%V 149
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a0/
%G ru
%F UZKU_2007_149_3_a0
A. N. Useinov; L. R. Tagirov; R. G. Deminov; N. Kh. Useinov. Giant magnetoresistance of nanoscale ferromagnetic heterocontacts. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 149 (2007) no. 3, pp. 5-30. http://geodesic.mathdoc.fr/item/UZKU_2007_149_3_a0/

[1] Garcia N., Munoz M., Zhao Y.-W., “Magnetoresistance in excess of 200$\%$ in Ballistic Ni Nanocontacts at Room Temperature and 100 Oe”, Phys. Rev. Lett., 82 (1999), 2923–2926 | DOI

[2] Tatara G., Zhao Y.-W., Munoz M., Garcia N., “Domain Wall Scattering Explains 300$\%$ Ballistic Magnetoconductance of Nanocontacts”, Phys. Rev. Lett., 83 (1999), 2030–2033 | DOI

[3] Garcia N., Munoz M., Zhao Y.-W., “Ballistic magnetoresistance in transition-metal nanocontacts: The case of iron”, Appl. Phys. Lett., 76 (2000), 2586–2587 | DOI

[4] Wegrowe J.-E., Wade T., Hoffer X., Gravier L., Bonard J.-M., Ansermet J.-Ph., Phys. Rev. B, 67 (2003), 104418-1–104418-7 | DOI

[5] Jubert P.-O., Allenspach R., Bischof A., “Magnetic domain walls in constrained geometries”, Phys. Rev. B, 69 (2004), 220410-1–220410-4 | DOI

[6] Sullivan M. R., Boehm D. A., Ateya D. A., Hua S. Z., Chopra H. D., “Ballistic magnetoresistance in nickel single-atom conductors without magnetostriction”, Phys. Rev. B, 71 (2005), 024412-1–024412-8 | DOI

[7] Chopra H. D., Sullivan M. R., Armstrong J. N., Hua S. Z., “The quantum spin-valve in cobalt atomic point contacts”, Nature Mater., 4 (2005), 832–837 | DOI

[8] Garcia N., Munoz M., Osipov V. V., Ponizovskaya E. V., Qian G. G., Saveliev I. G., Zhao Y.-W., “Ballistic magnetoresistance in different nanocontact configurations: a basis for future magnetoresistance sensors”, Magn. Magn. Mater., 240 (2002), 92–99 | DOI

[9] Zhao Y.-W., Munoz M., Tatara G., Garcia N., “From ballistic to non-ballistic magnetoresistance in nanocontacts: theory and experiments”, J. Magn. Magn. Mater., 223 (2001), 169–174 | DOI

[10] Imamura H., Kobayashi N., Takahashi S., Maekawa S., “Conductance Quantization and Magnetoresistance in Magnetic Point Contacts”, Phys. Rev. Lett., 80 (2000), 1003–1006 | DOI

[11] Zvezdin A. K., Popkov A. F., “Vliyanie domennoi granitsy na elektroprovodnost magnitnogo nanokontakta”, ZhETF. Pisma, 71:5 (2000), 304–308

[12] Tagirov L. R., Vodopyanov B. P., Efetov K. B., “Ballistic versus diffusive magnetoresistance of a magnetic point contact”, Phys. Rev. B, 63 (2001), 104428-1–104428-4 | DOI

[13] Bruno P., “Geometrically Constrained Magnetic Wall”, Phys. Rev. Lett., 83 (1999), 2425–2428 | DOI

[14] Savchenko L. L., Zvezdin A. K., Popkov A. F., Zvezdin K. A., “Magnitnye konfiguratsii v oblasti nanokontakta mezhdu ferromagnitnymi ‘`beregami’ ”, FTT, 43:8 (2001), 1449–1454

[15] Molyneux V. A., Osipov V. V., Ponizovskaya E. V., “Stable two- and three-dimensional geometrically constrained magnetic structures: The action of magnetic fields”, Phys. Rev. B, 65 (2002), 184425-1–184425-6 | DOI

[16] Labaye Y., Berger L., Coey J. M. D., “Domain walls in ferromagnetic nanoconstriction”, J. Appl. Phys., 91:8 (2002), 5341–5346 | DOI

[17] Gurney B. A., Speriosu V. S., Nozieres J.-P., Lefakis H., Wilhoit D. R., Need O. U., “Direct measurement of spin-dependent conduction-electron mean free paths in ferromagnetic metals”, Phys. Rev. Lett., 71 (1993), 4023–4026 | DOI

[18] Dieny B., “Giant magnetoresistance in spin-valve multilayers”, J. Magn. Magn. Mater., 136 (1994), 335–359 | DOI

[19] Useinov A. N., Deminov R. G., Tagirov L. R., Pan G., “Giant magnetoresistance in nanoscale ferromagnetic heterocontacts”, J. Phys.: Cond. Mat., 19 (2007), 196215-1–196215-10 | DOI

[20] Zaitsev A. V., “Kvaziklassicheskie uravneniya teorii sverkhprovodimosti dlya kontaktiruyuschikh metallov i svoistva mikrokontaktov s suzheniem”, ZhETF, 84 (1984), 1742–1758

[21] Tagirov L. R., Vodopyanov B. P., Efetov K. B., “Multivalued dependence of the magnetoresistance on the quantized conductance in nanosize magnetic contacts”, Phys. Rev. B, 65 (2002), 214419-1–214419-7 | DOI

[22] Gopar V. A., Weinmann D., Jalabert R. A., Stamps R. L., “Electronic transport throuth domain walls in ferromagnetic nanowires: Coexistance of adiabatic and nonadiabatic spin dynamics”, Phys. Rev. B, 69 (2004), 014426-1–014426-10 | DOI

[23] Kazantseva N., Wieser R., Nowak U., “Transition to Linear Domain Walls in Nanoconstrictions”, Phys. Rev. Lett., 94 (2005), 037206-1–037206-4 | DOI

[24] Ren Y., Li Zh., Xiao M., Hu A., “Oscillation effect and sign-change behaviour of the bias-dependent tunnelling magnetoresistance in ferromagnetic junctions”, J. Phys.: Cond. Mat., 17 (2005), 4121–4134 | DOI

[25] Valet T., Fert A., “Theory of the perpendicular magnetoresistance in magnetic multilayers”, Phys. Rev. B, 48 (1993), 7099–7113 | DOI

[26] Stearns M. B., “Reevaluation of spin-dependent cross sections of solutes in Fe”, J. Appl. Phys., 73:10 (1993), 6396–6398 | DOI

[27] Stearns M. B., “On the origin of ferromagnetism and the hyperfine fields in Fe, Co, and Ni”, Phys. Rev. B, 8:9 (1973), 4383–4398 | DOI

[28] Jansen R., Lodder J. C., “Resonant tunneling via spin-polarized barrier states in a magnetic tunnel junction”, Phys. Rev. B, 61 (2000), 5860–5863 | DOI

[29] Vedyaev A., Bagrets D., Dieny B., “Resonant spin-dependent tunneling in spin-valve junctions in the presence of paramagnetic impurities”, Phys. Rev. B, 63 (2001), 064429-1–064429-13 | DOI

[30] Bass J., Pratt W. P., “Version 7/21/01 current-perpendicular-to-plane (CPP) magnetoresistance”, Physica B, 321:1 (2002), 1–8 | DOI

[31] Garcia N., Rohrer H., Saveliev I.G., Zhao Y.-W., “Negative and Positive Magnetoresistance Manipulation in an Electrodeposited Nanometer Ni Contact”, Phys. Rev. Lett., 85 (2000), 3053–3056 | DOI

[32] Garcia N., Zhao Y.-W., Munoz M., Saveliev I. G., “Magnetoresistance in Ballistic Nanocontacts and Its Manipulation in Electrodeposited Nanometric Ni Contacts”, IEEE Trans. Magn., 36 (2000), 2833–2838 | DOI

[33] Petrovykh D. Y., Altmann K. N., Hochst H., Laubscher M., Maat S., Mankey G. J., Himpsel F. J., “Spin-dependent band structure, Fermi surface, and carrier lifetime of permalloy”, Appl. Phys. Lett., 73:23 (1998), 3459–3461 | DOI

[34] Altmann K. N., Gilman N., Hayoz J., Willis R. F., Himpsel F. J., “Effect of Magnetic Doping on the Electronic States of Ni”, Phys. Rev. Lett., 87 (2001), 137201-1–137201-4 | DOI

[35] Julliere M., “Tunneling Between Ferromagnetic Films”, Phys. Lett., 54A:3 (1975), 225–226

[36] Parkin S. P., Kaiser C., Panchula A., Rice P. M., Hughes B., “Giant tunneling magnetoresistance at room temperature with MgO(100) tunnel barriers”, Nature Mater., 3 (2004), 862–867 | DOI

[37] Yuasa S., Nagahama T., Fukushima A., Suzuki Y., Ando K., “Gaint room-temperature magnetoresistanse in single-crystal Fe/MgO/Fe magnetic tunnel junctions”, Nature Mater., 3 (2004), 868–871 | DOI

[38] Butler W. H., Zhang X.-G., Schulthess T. C., MacLaren J. M., “Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches”, Phys. Rev. B, 63 (2001), 054416-1–054416-12 | DOI

[39] Mathon J., Umerski A., “Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/ Fe(001) junction”, Phys. Rev. B, 63 (2001), 220403-1–220403-4 | DOI

[40] Seneor P., Fert A., Maurice J.-L., Montaigne F., Petroff F., Vaures A., “Large magnetoresistance in tunnel junctions with an iron oxide electrode”, App. Phys. Lett., 74:26 (1999), 4017–4019 | DOI

[41] Ignatenko S. A., Danilyuk A. L., Borisenko V. E., “Ostsillyatsii tunnelnogo magnito-soprotivleniya v strukture ferromagnetik/dielektrik/ferromagnetik”, ZhTF, 75:6 (2005), 8–12

[42] Beletskii N. N., Berman G. P., Bishop A. R., Borisenko S. A., Yakovenko V. M., “Magnetoresistance and spin polarization of electron current in magnetic tunnel junctions”, Phys. Rev. B, 75 (2007), 174418-1–174418-8 | DOI

[43] Ikeda S., Hayakawa J., Lee Y. M., Sasaki R., Meguro T., Matsukura F., Ohno H., “Dependence of tunnel magnetoresistance in MgO based magnetic tunnel junctions on Ar pressure during MgO sputtering”, Jpn. J. Appl. Phys., 44 (2005), L1442 | DOI

[44] Zhuravlev M. Ye., Tsymbal E. Y., Jaswal S. S., Vedyaev A. V., Deny B., “Spin blockade in ferromagnetic nanocontacts”, Appl. Phys. Lett., 83:2 (2003), 251–253 | DOI | MR

[45] Tagirov L. R., Vodopyanov B. P., Garipov B. M., “Giant magnetoresistance in quantum magnetic contacts”, J. Magn. Magn. Mater., 258–259 (2003), 61–66 | DOI

[46] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. Elektrodinamika sploshnykh sred, v. 8, FIZMATLIT, M., 1982, 621 pp.

[47] Cabrera G. G., Falicov L. M., “Theory of the Residual Resistivity of Bloch Walls”, Phys. Slat. Sol.(b), 61 (1974), 539–549 | DOI

[48] Nakanishi K., Nakamura Y. O., “Effect of a domain wall on conductance quantization in a ferromagnetic nanowire”, Phys. Rev. B, 61:17 (2000), 11278–11281 | DOI

[49] Mors F. M., Feshbakh G., Metody teoreticheskoi fiziki, v. 2, Izd-vo inostr. lit., M., 1960, 942 pp.

[50] Zaiman Dzh., Sovremennaya kvantovaya teoriya, Mir, M., 1971, 288 pp.

[51] Buttiker M., Imry Y., Landauer R., Pinhas S., “Generalized many-channel conductance formula with application to small rings”, Phys. Rev. B, 31 (1985), 6207–6215 | DOI