@article{UZKU_2006_148_4_a8,
author = {I. E. Anufriev and V. G. Korneev and V. S. Kostylev},
title = {Exactly equilibrated fields, can they be efficiently used for a~posteriori error estimation?},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {94--143},
year = {2006},
volume = {148},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a8/}
}
TY - JOUR AU - I. E. Anufriev AU - V. G. Korneev AU - V. S. Kostylev TI - Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation? JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 94 EP - 143 VL - 148 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a8/ LA - ru ID - UZKU_2006_148_4_a8 ER -
%0 Journal Article %A I. E. Anufriev %A V. G. Korneev %A V. S. Kostylev %T Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation? %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 94-143 %V 148 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a8/ %G ru %F UZKU_2006_148_4_a8
I. E. Anufriev; V. G. Korneev; V. S. Kostylev. Exactly equilibrated fields, can they be efficiently used for a posteriori error estimation?. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 4, pp. 94-143. http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a8/
[1] Ainsworth M., Demkowicz L., Kim C.-W., “Analysis of the equilibrated residual method for a posteriori estimation on meshes with hanging nodes”, Submitted for publication
[2] Ainsworth M., Oden J. T., A posteriori estimation in finite element analysis, John Wiley and Sons, Inc., N. Y., 2000, 240 pp.
[3] Aubin J.-P., Approximation of elliptic boundary-value problems, Wiley Interscience, a division of John Wiley and Sons, Inc., N. Y.–London–Sydney–Toronto, 1972 | Zbl
[4] Arthurs A. M., Complementary variational principles, Calderon Press, Oxford, 1980
[5] Babuška I., Reinbolt W. C., “Error estimates for adaptive finite element computations”, SIAM J. Num. Anal., 15:4 (1978), 736–754 | DOI | Zbl
[6] Babuška I., Reinbolt W. C., “A posteriori error analysis for finite element methods for one dimensional problems”, SIAM J. Num. Anal., 13:3 (1981), 565–589
[7] Babuška I., Strobolis T., Finite element method and its reliability, Oxford University Press, N. Y., 2001, 802 pp. | Zbl
[8] Berdichevskii V. L., “Variatsionnye principy mahaniki sploshnoi sredy”, Variational principles of mechanics of conytinuous media, Nauka, M., 1983 (Russian)
[9] Bernardi Ch., Girault V., “A local regularization operator for triangular and quadrilateral finite elements”, SIAM J. Num. Anal., 35:5 (1998), 1893–1916 | DOI | Zbl
[10] Braess D., Schöberl J., “Equilibrated residual error estimator for Maxswell's equations”, Submitted for publication
[11] Carstensen C., “Residual-based a posteriori error estimate for a nonconforming Reissner-Mindlin plate finite element”, SIAM J. Num. Anal., 39:6 (2002), 2034–2044 | DOI | Zbl
[12] Clèment Ph., “Approximation by finite element functions using local regularization Rev. Francaise”, Automat. Informat. Recherche Opèrationelle Sèr. Rouge Anal. Numèr., 9:2 (1925), 72–84
[13] Duvaut G., Lions I.-I., Inequalities in mechanics and physics, Springer-Verlag, Berlin–Hedelberg–N. Y., 1976 | Zbl
[14] Ekeland I., Temam R., Convex analysis of variational problems, North-Holland–Amsterdam–N. Y.–Oxford, 1976
[15] Fraeijs de Vebeke., “Displacement and equilibrium models in the finite element method”, Stress Analysis, eds. O. C. Zienkiewicz, G. S. Holister, Wiley, London-N. Y., 1965, 145–197
[16] Glowinski R., Numerical methods for nonlinear variational problems, Springer-Verlag, N. Y.–Berlin–Heidelberg–Tokio, 1984 | Zbl
[17] Gol'denweizer A. L., Theory of elastic thin shells, Translation of original Russian edition of 1953, Pergamon Press, N. Y., 1961
[18] Kelly D., “The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method”, Internat. J. Num. Methods Engrg., 20 (1984), 1491–1506 | DOI | Zbl
[19] Korneev V. G., “Primenenie metoda mehanicheskih kvadratur dlia postroenia raznostnoi shemy dlia ellipticheskogo uravnenia chetvertogo poriadka”, Implementation of quadrature method for costruction of difference method for elliptic equation of 4-th order, Metody vychislenii, 7, Isdatel'stvo Leningradskogo universiteta, Leningrad, 1971, 46–55 (Russian)
[20] Korneev V. G., “O sviazi raznostnyh shem dlia ellipticheskih uravnenii vtorogo poriadka so shemami kvadratur dlia integral'nyh uravnenii metoda raschlenenia”, On interrelation between difference schemes for elliptic equations of second order and quadrature method for integral equations of splitting method, Vestnik Leningradskogo universiteta, 1973, no. 1, 18–27 (Russian)
[21] Korneev V. G., “Raznostnaya shema poriadka tochnosti $h^{3/2}$ v norme $\|\cdot\|_{h,W_{2}^1}$ dlia ellipticheskogo uravnenia vtorogo poriadka v proizvol'noi oblasti”, Difference scheme of accuracy $h^{3/2}$ in the norm $\|\cdot\|_{h,W_{2}^1}$ for elliptic equation of second order in arbitrary domain, Vestnik Leningradskogo universiteta, 1973, no. 7, 25–33 (Russian)
[22] Korneev V. G., “Svedenie zadachi rascheta arochnoi plotiny k zadache na minimum raboty uprugih sil nepreryvnoi sterzhnevoi sistemy”, Reduction of the problem to minimization of work of elastic forces work for continuous rod system, Trudy Gidroproekta, v. 22, ed. D. M. Yurinov, M., 1973, 4–12 (Russian)
[23] Korneev V. G., “Diskretizatsia raboty uprugih sil nepreryvnoi sterzhnevoi sistemy”, Discretization of functional of elastic forces work for continuous rod system, Trudy Gidroproekta, v. 22, ed. D. M. Yurinov, M., 1973, 12–32 (Russian)
[24] Korneev V. G., “O ratsional'nom vybore koordinatnyv funktsii pri minimizatsii diskretnogo funktsionala raboty uprugih sil”, On rational choice of the coordinate functions at minimization of the discrete functional of the work of elastic forces, Trudy Gidroproekta, v. 22, ed. D. M. Yurinov, M., 1973, 86–102 (Russian)
[25] Korneev V. G., “Issledovanie shodimosti priblizhennyh reshenii”, Analysis of convergence of approximate solutions, Trudy Gidroproekta, v. 22, ed. D. M. Yurinova, M., 1973, 141–182 (Russian)
[26] Korneev V. G., Shemy metoda konechnyh elementov poriadkov tochnosti, The finite elelment methods of high oreders of accuracy, lIzdatel'stvo Leningradskogo universiteta, Leningrad, 1977 (Russian)
[27] Korneev V. G., “On numerical solution of the shell theory problems in stresses on skew-angular meshes”, Comput. Maths and Math. Physics, 21:2 (1981), 441–450
[28] Korneev V. G., “Superconvergence of the finite element solutions in the mesh norms”, Comput. Maths and Math. Physics, 22:5 (1982), 1133–1148 | Zbl
[29] Korneev V. G., Rozin L. A., “Algorithmy rascheta obolochek po sterzhnevoi sheme i ih matematicheskoe issledovanie”, Algorithms for numerical solution of shell problems and their mathematical analysis, Materialy 6-i vsesoyuznoi konferetsii po teorii obolochek i plastin (Baku, 1966), Nauka, M., 1966, 555–560 (Russian)
[30] Korneev V. G., Rozin L. A., “Chislennaia relizatsia metoda raschlenenia na primere zadachi izgiba plastinki”, Numerical realization of the splitting method for the plate bending problem, Izvestia Akademii Nauk SSSR. Mehanika tverdogo tela, 1967, no. 2 (Russian)
[31] Ladevese P., Leguillon D., “Error estimate procedure in the finite element method and applications”, SIAM J. Num. Anal., 20 (1983), 485–509 | DOI
[32] Luce R., Wohlmuth B., “A local a posteriori error estimator based on equilibrated fluxes”, SIAM J. Num. Anal., 42 (2004), 1394–1414 | DOI | Zbl
[33] Mikhlin S. G., Variational methods in mathematical physics, Pergamon, Oxford, 1964
[34] Mosolov P. P., Myasnikov V. P., Mechanics of rigid plastic bodies, Nauka, M., 1981 (Russian) | Zbl
[35] Neittaanmäki P., Repin S. I., Reliable methods for computer simulation Error control and a posteriori estimates, Elsevier, N. Y., 2004, 305 pp.
[36] Novozhilov V. V., Teoria tonkih obolochek, Theory of thin shells, Gosudarstvennoe soyuznoe izdatel'stvo sudostroitel'noi promyshlennosti, Leningrad, 1962 (Russian)
[37] Novozhilov V. V., Theory of thin shells, Noordoff, Dordrecht, 1959 | Zbl
[38] Oganesian L. A., Ruhovets L. A., Variatsionno-raznostnye metody reshenia ellipticheskih uravnenii, Izdatel'stvo Armianskoi akademii nauk, Erevan, 1979
[39] Oden J. T., Demkowicz L., Rachowicz W., Westermann T. A., “Towards a universal h-p adaptive finite element strategy. Part 2. A posteriori error estimation”, Comput. Methods Appl. Mech. Engrg., 77 (1989), 113–180 | DOI | Zbl
[40] Oden T., Duarte C., Zienkiewcz O., “A new cloud based finite element method”, Comput. Methods Appl. Mech. Engrg., 153 (1998), 117–126 | DOI | Zbl
[41] Repin S., Frolov M., “Ob a posteriornyh otsenkah tochnosti priblizhennyh reshenii kraevyx zadach dlia ellipticheskih uravnenii”, On a posteriori estimates of approximate solutions of boundary value problems for elliptic equations, Zhurnal vychislit. matem. i matem. phiziki, 42:12 (2002), 1774–1787 | Zbl
[42] Repin S., Neittaanmäkki P., Frolov M., “On computational properties of a posteriori estimates based upom the method of duality error majorants”, Numerical Mathematics and Advanced Applications, ENUMATH-2003, Springer-Verlag, Berlin–Heidelberg, 2004, 346–357 | Zbl
[43] Repin S. I., Xanthis L. S., “A posteriori error estimation for elasto-plastic problems based on duality theory”, Comput. Methods Appl. Mech. Engrg., 138:1 (1996), 317–339 | DOI | Zbl
[44] Reissner E., “On the derivation of the theory of thin elastic shells”, J. Math. Phys., 42:4 (1963), 263–277
[45] Rozin L. A., “Metod raschlenenia v teorii obolochek”, The splitting method in the shell theory, Prikladnaia matematika i mehanika, 25:5 (1961) (Russian) | Zbl
[46] Rozin L. A., “Hekotorye voprosy raschlenenia i diskretizatsii uravnenii teorii obolochek”, Some questions of splitting and discretization of equations of the shell theory, Issledovania po teorii uprugosti i plastichnosti, 4, Izdatel'stvo Leningradskogo universiteta, Leningrad, 1965
[47] Strobolis T., Babuska I., Copps K., “The design and analysis of the generalized finite element method”, Comput. Methods Appl. Mech. Engrg., 181 (2000), 43–69 | DOI
[48] Stewart J. R., Hughes T. J. R., “A tutorial in elementary finite element error analysis. A systematic presentation of a priori and a posteriori error estimates”, Comput. Methods Appl. Mech. Engrg., 158:1–2 (1998), 1–22 | DOI | Zbl
[49] Temam R., Problèmes Mathématique en Plasticité, Bordas, Paris, 1983 | MR | Zbl
[50] Vejchodský T., “Local a posteriori error estimator based on the hypercircle method”, Proc. of the European Congress on Computational Method in Applied Mechanics and Engrg. (ECCOMUAS 2004), Yavaskylä, Finland, 2004
[51] Verfürth R. A., “A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations”, Math. of Comput., 62:206 (1994), 445–465 | DOI | MR
[52] Verfürth R. A., A review of a posteriori error estimation and adaptive mesh refinement techniques, John Wiley and Sons, BG Teubner, 1996, 127 pp.
[53] Walbin L. B., Superconvergence in Galerkin finite element methods, Lecture notes in Mathematics, Springer, Berlin, 1995 | MR
[54] Washizu K., Variational principles in elasticity and plasticity, Pergamon Press, N. Y., 1982 | Zbl
[55] Zienkiewicz O. C., Zhu J. Z., “The superconvergence path recovery (SPR) and adaptive finite element refinement”, Comput. Methods Appl. Mech. Engrg., 29:1 (1992), 78–88 | MR