On problems with displacement in boundary conditions for two partial differential equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 4, pp. 76-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper the system $$ \sum_{i=0}^2\sum_{j=0}^ka_{ij}(x,y)D_x^iD_y^ju(x,y)=0,\quad k=1,2, $$ is investigated. The first equation of this system is the generalization of Aller's equation, and the second one is the generalization of Boussinesq–Love's equation. We consider the problems of finding the regular solutions of this system in the rectangle $D=\{x,y\in(0,1)\}$ by using the given linear relationships. The each of these relationships connect a values of unknown function in the boundary and the interior points of $D$ We obtain the sufficient conditions of existence of unique solutions of the considered problems in the terms of the coefficients of the above mentioned relationships.
@article{UZKU_2006_148_4_a6,
     author = {E. A. Utkina},
     title = {On problems with displacement in boundary conditions for two partial differential equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {76--82},
     year = {2006},
     volume = {148},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a6/}
}
TY  - JOUR
AU  - E. A. Utkina
TI  - On problems with displacement in boundary conditions for two partial differential equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 76
EP  - 82
VL  - 148
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a6/
LA  - ru
ID  - UZKU_2006_148_4_a6
ER  - 
%0 Journal Article
%A E. A. Utkina
%T On problems with displacement in boundary conditions for two partial differential equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 76-82
%V 148
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a6/
%G ru
%F UZKU_2006_148_4_a6
E. A. Utkina. On problems with displacement in boundary conditions for two partial differential equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 4, pp. 76-82. http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a6/

[1] Zhegalov V. I., “Kraevaya zadacha dlya uravneniya smeshannogo tipa s granichnymi usloviyami na obeikh kharakteristikakh i s razryvami na perekhodnoi linii”, Uchen. zap. Kazan. un-ta, 122, kn. 3 (1962), 3–16 | Zbl

[2] Nakhushev A. M., “O nekotorykh kraevykh zadachakh dlya giperbolicheskikh uravnenii i uravnenii smeshannogo tipa”, Differents. uravneniya, 5:1 (1969), 44–59 | Zbl

[3] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, Dokl. AN SSSR, 183:4 (1969), 739–740

[4] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Differents. uravneniya, 16:11 (1980), 1925–1935 | MR

[5] Soldatov A. P., Shkhanukov M. Kh., “Kraevye zadachi s obschim nelokalnym usloviem A. A. Samarskogo dlya psevdoparabolicheskikh uravnenii vysokogo poryadka”, DAN SSSR, 297:3 (1987), 547–552 | MR

[6] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp. | Zbl

[7] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Kazan. matem. o-vo, Kazan, 2001, 226 pp.

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 576 pp. | MR

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1976, 544 pp. | MR

[10] Myuntts G., Integralnye uravneniya. Chast 1. Lineinye uravneniya Volterra, GTTI, M.-L., 1934, 330 pp.