Finite element schemes of a high accuracy order for two-pointed heterogeneous boundary-value problem with degeneration
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 4, pp. 63-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The purpose of the paper is construction of a finite element schemes with a high approximation order for two-pointed heterogeneous boundary-value problem with degenerated coefficients, based on a multiplicative allocation of singularities. It is proved, that this method has optimal order of convergence rate.
@article{UZKU_2006_148_4_a5,
     author = {Sh. I. Tayupov and M. R. Timerbaev},
     title = {Finite element schemes of a~high accuracy order for two-pointed heterogeneous boundary-value problem with degeneration},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {63--75},
     year = {2006},
     volume = {148},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a5/}
}
TY  - JOUR
AU  - Sh. I. Tayupov
AU  - M. R. Timerbaev
TI  - Finite element schemes of a high accuracy order for two-pointed heterogeneous boundary-value problem with degeneration
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 63
EP  - 75
VL  - 148
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a5/
LA  - ru
ID  - UZKU_2006_148_4_a5
ER  - 
%0 Journal Article
%A Sh. I. Tayupov
%A M. R. Timerbaev
%T Finite element schemes of a high accuracy order for two-pointed heterogeneous boundary-value problem with degeneration
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 63-75
%V 148
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a5/
%G ru
%F UZKU_2006_148_4_a5
Sh. I. Tayupov; M. R. Timerbaev. Finite element schemes of a high accuracy order for two-pointed heterogeneous boundary-value problem with degeneration. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 4, pp. 63-75. http://geodesic.mathdoc.fr/item/UZKU_2006_148_4_a5/

[1] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR

[2] Lizorkin P. I., Nikolskii S. M., “Ellipticheskie uravneniya s vyrozhdeniem. Differentsialnye svoistva”, Dokl. AN SSSR, 257:2 (1981), 278–282 | MR | Zbl

[3] Kydyraliev S. K., “O povyshenii gladkosti reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 25:3 (1989), 529–531 | MR | Zbl

[4] Timerbaev M. R., “Vesovye otsenki resheniya zadachi Dirikhle s anizotropnym vyrozhdeniem na chasti granitsy”, Izv. vuzov. Matematika, 2003, no. 1, 60–73 | MR | Zbl

[5] Gusman Yu. A., Oganesyan L. A., “Otsenki skhodimosti konechno-raznostnykh skhem dlya vyrozhdennykh ellipticheskikh uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 5:2 (1965), 351–357 | MR

[6] Rukavishnikova E. I., “O poryadke skhodimosti metoda konechnykh elementov dlya ellipticheskoi kraevoi zadachi s vyrozhdeniem”, DVO AN SSSR, Vladivostok, 1987, 26–52

[7] Lyashko A. D., Timerbaev M. R., “Otsenki tochnosti skhem MKE dlya vyrozhdayuschikhsya ellipticheskikh uravnenii vtorogo poryadka”, Differents. uravneniya, 29:7 (1993), 1210–1215 | MR | Zbl

[8] “Timerbaev M. R., Lyashko A. D.”, Differents. uravneniya, 30:7 (1994), 1239–1243 | MR | Zbl

[9] Timerbaev M. R., “Konechnoelementnaya approksimatsiya vyrozhdayuschegosya ellipticheskogo uravneniya 2-go poryadka v oblasti s krivolineinoi granitsei”, Izv. vuzov. Matematika, 1994, no. 9, 78–86 | MR | Zbl

[10] Karchevskii M. M., Lyashko A. D., Timerbaev M. R., “Metod konechnykh elementov dlya kvazilineinykh vyrozhdayuschikhsya uravnenii 4-go poryadka”, Differents. uravneniya, 35:2 (1999), 232–237 | MR

[11] Timerbaev M. R., “Multiplikativnoe vydelenie osobennosti v skhemakh MKE dlya ellipticheskikh vyrozhdayuschikhsya uravnenii”, Differents. uravneniya, 36:7 (2000), 1086–1093 | MR | Zbl

[12] Kudryavtsev L. D., “Ob ekvivalentnykh normakh v vesovykh prostranstvakh”, Tr. MIAN im. Steklova, 170, ch. 10, 1984, 161–190 | MR | Zbl

[13] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp. | MR

[14] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR

[15] Timerbaev M. R., “O nepreryvnosti integralnykh operatorov v prostranstvakh vektor-funktsii”, Issledovaniya po prikladnoi matematike i informatike, 23, Izd-vo Kazan. matem. o-va, Kazan, 2001, 118–121 | MR

[16] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp. | MR