@article{UZKU_2006_148_3_a7,
author = {E. K. Lipachev},
title = {Dirichlet and {Neumann} boundary value problems for {Helmholtz} equation in unbounded domains with piecewise smooth part of boundary},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {94--108},
year = {2006},
volume = {148},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/}
}
TY - JOUR AU - E. K. Lipachev TI - Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 94 EP - 108 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/ LA - ru ID - UZKU_2006_148_3_a7 ER -
%0 Journal Article %A E. K. Lipachev %T Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 94-108 %V 148 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/ %G ru %F UZKU_2006_148_3_a7
E. K. Lipachev. Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 94-108. http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/
[1] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, Uspekhi matem. nauk, 38:2 (1983), 3–76 | MR
[2] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi s kusochno–gladkoi granitsei, Nauka, M., 1991, 336 pp.
[3] Lipachev E. K., “K priblizhennomu resheniyu kraevoi zadachi difraktsii voln na oblastyakh s beskonechnoi granitsei”, Izv. vuzov. Matematika, 2001, no. 4, 69–72 | MR | Zbl
[4] Lipachev E. K., “O kraevykh zadachakh dlya uravneniya Gelmgoltsa v oblastyakh s nerovnoi granitsei”, Trudy Matem. tsentra imeni N. I. Lobachevskogo, 17, Izd-vo KMO, Kazan, 2002, 79–89 | MR
[5] Lipachev E. K., “Reshenie zadachi Dirikhle dlya uravneniya Gelmgoltsa v oblastyakh s nerovnoi granitsei”, Izv. vuzov. Matematika, 2006, no. 9, 43–49 | MR
[6] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980, 232 pp. | MR
[7] Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti, Nauka, M., 1972, 424 pp. | MR
[8] Galishnikova T. N., Ilinskii A. S., Chislennye metody v zadachakh difraktsii, Izd-vo Mosk. un-ta, M., 1987, 208 pp. | MR | Zbl
[9] R. Petit(ed.), Electromagnetic Theory of Gratings, Berlin–Heidelberg–New York, 1980, 284 pp. | MR | Zbl
[10] Tsang L., Kong J. A., Ding K. H., Scattering of Electromagnetic waves. Theories and Applications, Wiley-Interscience, N. Y., 2000, 426 pp. | Zbl
[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 528 pp. | Zbl
[12] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shk., M., 1991, 224 pp.
[13] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln), TOO “Yanus”, M., 1995, 520 pp. | MR | Zbl
[14] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974, 328 pp. | Zbl
[15] Pleschinskii N. B., “Metod preobrazovaniya Fure v zadachakh sopryazheniya elektromagnitnykh polei”, Tr. Matem. tsentra imeni N. I. Lobachevskogo, 6, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, NIIMM im. N. G. Chebotareva, Kazan, 2000, 153–185
[16] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh (Psevdodifferentsialnye operatory v zadachakh difraktsii), IPRZhR, M., 1996, 176 pp.
[17] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984, 344 pp. | MR
[18] Egorov Yu. V., Shubin M. A., “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii”, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fundam. napravleniya, 30, VINITI AN SSSR, M., 1987, 1–262
[19] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR
[20] Shestopalov Yu. V., “Primenenie metoda obobschennykh potentsialov dlya resheniya nekotorykh zadach teorii difraktsii i rasprostraneniya voln”, Zhurn. vych. matem. i mat. fiziki, 30:7 (1990), 1081–1092 | MR
[21] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, L., 1962, 708 pp. | MR
[22] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda, Izd-vo Kazan. un-ta, Kazan, 1994, 288 pp. | MR
[23] Agachev Yu. R., “O skhodimosti metoda splain-podoblastei dlya integralnykh uravnenii”, Izv. vuzov. Matematika, 1981, no. 6, 3–10 | MR