Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 94-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study the boundary value problems modelling scattering waves by a domain with the rough boundary. We assume that a domain is the half plane and a finite part of boundary is characterized by a piecewise smooth function. We also assumed that singularities of boundaries are the edges. We prove the theorems of existence and uniqueness of solution of the boundary value problems. We find the integral equations of second kind and we show that these equations are equivalent to the boundary value problems. We propose the numerical algorithms for scattering problems. They are based on the spline-subdomains method for integral equations. We establish the convergence of this numerical algorithm.
@article{UZKU_2006_148_3_a7,
     author = {E. K. Lipachev},
     title = {Dirichlet and {Neumann} boundary value problems for {Helmholtz} equation in unbounded domains with piecewise smooth part of boundary},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {94--108},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/}
}
TY  - JOUR
AU  - E. K. Lipachev
TI  - Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 94
EP  - 108
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/
LA  - ru
ID  - UZKU_2006_148_3_a7
ER  - 
%0 Journal Article
%A E. K. Lipachev
%T Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 94-108
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/
%G ru
%F UZKU_2006_148_3_a7
E. K. Lipachev. Dirichlet and Neumann boundary value problems for Helmholtz equation in unbounded domains with piecewise smooth part of boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 94-108. http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a7/

[1] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi v negladkikh oblastyakh”, Uspekhi matem. nauk, 38:2 (1983), 3–76 | MR

[2] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi s kusochno–gladkoi granitsei, Nauka, M., 1991, 336 pp.

[3] Lipachev E. K., “K priblizhennomu resheniyu kraevoi zadachi difraktsii voln na oblastyakh s beskonechnoi granitsei”, Izv. vuzov. Matematika, 2001, no. 4, 69–72 | MR | Zbl

[4] Lipachev E. K., “O kraevykh zadachakh dlya uravneniya Gelmgoltsa v oblastyakh s nerovnoi granitsei”, Trudy Matem. tsentra imeni N. I. Lobachevskogo, 17, Izd-vo KMO, Kazan, 2002, 79–89 | MR

[5] Lipachev E. K., “Reshenie zadachi Dirikhle dlya uravneniya Gelmgoltsa v oblastyakh s nerovnoi granitsei”, Izv. vuzov. Matematika, 2006, no. 9, 43–49 | MR

[6] Gabdulkhaev B. G., Optimalnye approksimatsii reshenii lineinykh zadach, Izd-vo Kazan. un-ta, Kazan, 1980, 232 pp. | MR

[7] Bass F. G., Fuks I. M., Rasseyanie voln na statisticheski nerovnoi poverkhnosti, Nauka, M., 1972, 424 pp. | MR

[8] Galishnikova T. N., Ilinskii A. S., Chislennye metody v zadachakh difraktsii, Izd-vo Mosk. un-ta, M., 1987, 208 pp. | MR | Zbl

[9] R. Petit(ed.), Electromagnetic Theory of Gratings, Berlin–Heidelberg–New York, 1980, 284 pp. | MR | Zbl

[10] Tsang L., Kong J. A., Ding K. H., Scattering of Electromagnetic waves. Theories and Applications, Wiley-Interscience, N. Y., 2000, 426 pp. | Zbl

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 528 pp. | Zbl

[12] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shk., M., 1991, 224 pp.

[13] Lifanov I. K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment (v matematicheskoi fizike, aerodinamike, teorii uprugosti i difraktsii voln), TOO “Yanus”, M., 1995, 520 pp. | MR | Zbl

[14] Mittra R., Li S., Analiticheskie metody teorii volnovodov, Mir, M., 1974, 328 pp. | Zbl

[15] Pleschinskii N. B., “Metod preobrazovaniya Fure v zadachakh sopryazheniya elektromagnitnykh polei”, Tr. Matem. tsentra imeni N. I. Lobachevskogo, 6, Zadachi difraktsii i sopryazhenie elektromagnitnykh polei v volnovodnykh strukturakh, NIIMM im. N. G. Chebotareva, Kazan, 2000, 153–185

[16] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh (Psevdodifferentsialnye operatory v zadachakh difraktsii), IPRZhR, M., 1996, 176 pp.

[17] Nikiforov A. F., Uvarov V. B., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984, 344 pp. | MR

[18] Egorov Yu. V., Shubin M. A., “Lineinye differentsialnye uravneniya s chastnymi proizvodnymi. Osnovy klassicheskoi teorii”, Itogi nauki i tekhniki. Sovrem. problemy matematiki. Fundam. napravleniya, 30, VINITI AN SSSR, M., 1987, 1–262

[19] Kolton D., Kress R., Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp. | MR

[20] Shestopalov Yu. V., “Primenenie metoda obobschennykh potentsialov dlya resheniya nekotorykh zadach teorii difraktsii i rasprostraneniya voln”, Zhurn. vych. matem. i mat. fiziki, 30:7 (1990), 1081–1092 | MR

[21] Kantorovich L. V., Krylov V. I., Priblizhennye metody vysshego analiza, Fizmatgiz, L., 1962, 708 pp. | MR

[22] Gabdulkhaev B. G., Pryamye metody resheniya singulyarnykh integralnykh uravnenii pervogo roda, Izd-vo Kazan. un-ta, Kazan, 1994, 288 pp. | MR

[23] Agachev Yu. R., “O skhodimosti metoda splain-podoblastei dlya integralnykh uravnenii”, Izv. vuzov. Matematika, 1981, no. 6, 3–10 | MR