@article{UZKU_2006_148_3_a6,
author = {M. A. Ignat'eva and A. V. Lapin and N. V. Lapin},
title = {Domain decomposition method for {Signorini} problem in mixed hybrid formulation},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {80--93},
year = {2006},
volume = {148},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a6/}
}
TY - JOUR AU - M. A. Ignat'eva AU - A. V. Lapin AU - N. V. Lapin TI - Domain decomposition method for Signorini problem in mixed hybrid formulation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 80 EP - 93 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a6/ LA - ru ID - UZKU_2006_148_3_a6 ER -
%0 Journal Article %A M. A. Ignat'eva %A A. V. Lapin %A N. V. Lapin %T Domain decomposition method for Signorini problem in mixed hybrid formulation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 80-93 %V 148 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a6/ %G ru %F UZKU_2006_148_3_a6
M. A. Ignat'eva; A. V. Lapin; N. V. Lapin. Domain decomposition method for Signorini problem in mixed hybrid formulation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 80-93. http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a6/
[1] Dostal Z., Friedlander A., Gomes F. A. M., Santos S. A., “Preconditioning by projectors in the solution of contact problems: A parallel implementation”, Ann. Oper. Res. m., 117 (2002), 117–129 | DOI | MR | Zbl
[2] Dostal Z., Horak D., “Scalability and FETI based algorithm for large discretized variational inequalities”, Math. Comput. Simul., 61 (2003), 347–357 | DOI | MR | Zbl
[3] Danek J., Hlaváček I, Nedoma J., “Domain decomposition for generalized unilateral semi-coercive contact problem with given friction in elasticity”, Math. Comput. Simul., 68 (2005), 271–300 | DOI | MR | Zbl
[4] Laitinen E., Lapin A. V., Pieskä J., “Splitting iterative methods and parallel solution of variational inequalities”, Lobachevskii J. of Mathematics, 8 (2001), 167–184 | MR | Zbl
[5] Herrera I., Keyes D., Widlund O., Yates R.(eds.), Domain Decomposition Methods in Science and Engineering, National Autonomous University of Mexico (UNAM), Mexico City, Mexico, 2003, 466 pp. | MR | Zbl
[6] Kornhuber R., Hoppe R., Periaux J., Pironneau O., Widlund O., Xu J.(eds.), Domain Decomposition Methods in Science and Engineering, Lecture Notes in Computational Science and Engineering, 40, Springer, 2004, 700 pp.
[7] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer Verlag, N. Y., 1991 | MR | Zbl
[8] Roberts J. E., Thomas J. M., “Mixed and hybrid methods”, Numer. Anal., II (1991), 523–639 | MR
[9] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA J. of Numer. Anal., 18 (1998), 121–132 | DOI | MR | Zbl
[10] Milner F. A., “Mixed finite element methods for quasilinear second-order elliptic problems”, Math. Comp., 44 (1985), 303–320 | DOI | MR | Zbl
[11] Park E.-J., “Mixed finite element methods for nonlinear second order elliptic problems”, SIAM J. Numer. Anal., 32 (1995), 865–885 | DOI | MR | Zbl
[12] Chen Z., “Expanded mixed finite element methods for linear second order elliptic problems, I”, Mathematical Modelling and Numerical Analysis, 32:4 (1998), 479–499 ; “II”, 500–520 | MR | Zbl
[13] Milner F. A., Park E.-J., “A mixed finite element method for a strongly nonlinear second order elliptic problem”, Math. Comp., 64 (1995), 973–988 | DOI | MR | Zbl
[14] Lee M., Milner F. A., “Mixed finite element methods for nonlinear elliptic problems: the $p$-version”, Numer. Meth. for Part. Diff. Eq., 12 (1996), 729–741 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] Milner F. A., Suri M., “Mixed quasilinear second-order elliptic problems: the $p$-version”, Mathematical Modelling and Numerical Analysis, 26 (1992), 913–931 | MR | Zbl
[16] Hua D., Wang L., “A mixed finite element method for the contact problem in elasticity”, J. Comput. Math., 23:4 (2005), 441–448 | MR | Zbl
[17] Kulikov G. M., Plotnikova S. V., “Kontaktnaya zadacha dlya geometricheski nelineinoi obolochki tipa Timoshenko”, PMM, 67:6 (2003), 940–953 | Zbl
[18] Hlaváček I., “Reliable solution of a unilateral contact problem with friction, considering uncertain input data”, Applied nonlinear analysis, In honor of the 70th birthday of Professor Jindrich Necas, Kluwer Academic/Plenum Publishers, N. Y., 1999, 175–183 | MR | Zbl
[19] Ignatieva M. A., Lapin A. V., “Mixed hybrid finite element scheme for Stefan problem with prescribed convection”, Lobachevskii J. Math., 13 (2003), 15–24 ; URL: http://www.ljm.ksu.ru/vol13/ila.htm | MR | Zbl
[20] Ignatieva M. A., Lapin A. V., “Iterative solution of a mixed hybrid finite element scheme for the Signorini problem”, Comp. Meth. in Appl. Math., 4:2 (2004), 180–191 | MR | Zbl
[21] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[22] Dautov R. Z., Karchevskii M. M., Vedenie v teoriyu metoda konechnykh elementov, Kazan. gos. un-t, Kazan, 2004, 239 pp.
[23] Kuznetsov Yu. A., “Spectrally equivalent preconditioners for mixed hybrid discretizations of diffusion equations on distorted meshes”, J. Numer. Math., 11 (2003), 61–74 | DOI | MR | Zbl
[24] Lapin A. V., “Metody tipa relaksatsii dlya summy kvadratichnogo i vypuklogo funktsionalov”, Izv. vuzov. Matematika, 1993, no. 8, 30–39 | MR | Zbl