Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 137-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main goal of this paper is to address the numerical solution of the problem of fluid-structure interaction between blood and arterial walls. We use one-dimensional effective model derived asymptotically from the Navier–Stokes equations describing blood flow and the linear elastic membrane equation for arterial walls. In this study we consider case with bifurcated compliant arteries with inserted prosthesis. We use the derived model to estimate the influence of a shear stress on the developing of atherogenesis.
@article{UZKU_2006_148_3_a11,
     author = {S. A. Lapin and S. \v{C}ani\'c},
     title = {Numerical modeling of the design of bifurcated prostheses used in~the treatment of abdominal aortic aneurysm},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {137--151},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/}
}
TY  - JOUR
AU  - S. A. Lapin
AU  - S. Čanić
TI  - Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 137
EP  - 151
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/
LA  - ru
ID  - UZKU_2006_148_3_a11
ER  - 
%0 Journal Article
%A S. A. Lapin
%A S. Čanić
%T Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 137-151
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/
%G ru
%F UZKU_2006_148_3_a11
S. A. Lapin; S. Čanić. Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 137-151. http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/

[1] Čanić S., Krajcer Z., Lapin S., “Design of Optimal Endoprosthesis Using Mathematical Modeling”, Endovascular Today, 2006, May, 48–50, Cover story

[2] Nichols W. W., O'Rourke M. F., McDonald's Blood Flow in Arteries: Theoretical, experimental and clinical principles, Arnold and Oxford University Press Inc., N. Y.–London–Sydney–Auckland, 1998

[3] Wang R., Ravi-Chandar K., “Mechanical response of a metallic aortic stent. I: Pressure-diameter relationship”, J. Appl. Mech., 71 (2004), 697–705 | DOI | Zbl

[4] Wang R., Ravi-Chandar K., “Mechanical response of a metallic aortic stent. II: A beam on elastic foundation model”, J. Appl. Mech., 71 (2004), 706–712 | DOI | Zbl

[5] Umscheid T., Stelter W. J., “Time-related alterations in shape, position, and structure of self-expanding, modular aortic stent-grafts”, J. Endovasc. Surg., 6 (1999), 17–32 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[6] Čanić S., Hartley C. J., Rosenstrauch D., Tambača J., Guidoboni G., Mikelic A., “Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation”, Ann. Biomed. Eng., 34 (2006), 575–592 | DOI

[7] Čanić S., Mikelic S. A., Lamponi D., Tambača J., “Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries”, SIAM J. Multiscale Analysis and Simulation, 3:3 (2005), 559–596 | DOI | MR

[8] Čanić S., Kim E. H., “Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axisymmetric vessels”, Math. Methods in Appl. Sciences, 26 (2003), 1161–1186 | DOI | MR

[9] White F. M., Viscous Fluid Flow, McGraw-Hill, N. Y., 1974 | Zbl

[10] Smith N. P., Pullan A. J., Hunter P. J., “The generation of an anatomically accurate geometric coronary model”, Ann. Biomed. Eng., 28:1 (2000), 14–25 | DOI

[11] Smith N. P., Pullan A. J., Hunter P. J., “An anatomically based model of transient coronary blood flow in the heart”, SIAM J. Appl. Math., 62 (2002), 990–1018 | DOI | MR | Zbl

[12] Olufsen M., Peskin C., Kim W., Pedersen E., Nadim A., Larsen J., “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Ann. Biomed. Eng., 28 (2000), 1281–1299 | DOI

[13] Marusic-Paloka E., “Fluid flow through a network of thin pipes”, Comptes Rendus de l'Academie des Sciences Paris. Serie II. Fascicule b. Mecanique, 329:2 (2001), 103–108 | Zbl

[14] Smoller J., Shock waves and reaction-diffusion equations, Springer-Verlag, N. Y., 1994 | MR

[15] Leveque R., Numerical Methods for Conservation Laws, Birkhäuser, Basel–Boston, 1992 | MR | Zbl

[16] Parent F. N., Godziachvilli V., Meier G. H., Parker F. M., Carter K., Gayle R. G., Demassi R. J., Gregory R. T., “Endograft limb occlusion and stenosis after {ANCURE} endovascular abdominal aneurysm repair”, J. of Vasc. Surg., 35:4 (2002), 686–690 | DOI

[17] Ku D. N., Giddens D. P., Zarins C. K., Glagov S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress”, Atherosclerosis, 5 (1985), 293–302

[18] Moore J. E., Xu C., Glagov S., Zarins C.K., Ku D.N., “Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis”, Atherosclerosis, 110 (1994), 225–240 | DOI

[19] Haidekker M. A., White C. R., Frangos J. A., “Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step”, J. Biomech. Eng., 123:5 (2001), 455–463 | DOI

[20] Dyet J. F., Watts W. G., Ettles D. E., Nicholson A. A., “Mechanical properties of metallic stents: How do these properties influence the choice of stent for specific leisons?”, Cardiovasc. Interv. Radiology, 23 (2000), 47–54 | DOI