@article{UZKU_2006_148_3_a11,
author = {S. A. Lapin and S. \v{C}ani\'c},
title = {Numerical modeling of the design of bifurcated prostheses used in~the treatment of abdominal aortic aneurysm},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {137--151},
year = {2006},
volume = {148},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/}
}
TY - JOUR AU - S. A. Lapin AU - S. Čanić TI - Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 137 EP - 151 VL - 148 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/ LA - ru ID - UZKU_2006_148_3_a11 ER -
%0 Journal Article %A S. A. Lapin %A S. Čanić %T Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 137-151 %V 148 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/ %G ru %F UZKU_2006_148_3_a11
S. A. Lapin; S. Čanić. Numerical modeling of the design of bifurcated prostheses used in the treatment of abdominal aortic aneurysm. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 137-151. http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a11/
[1] Čanić S., Krajcer Z., Lapin S., “Design of Optimal Endoprosthesis Using Mathematical Modeling”, Endovascular Today, 2006, May, 48–50, Cover story
[2] Nichols W. W., O'Rourke M. F., McDonald's Blood Flow in Arteries: Theoretical, experimental and clinical principles, Arnold and Oxford University Press Inc., N. Y.–London–Sydney–Auckland, 1998
[3] Wang R., Ravi-Chandar K., “Mechanical response of a metallic aortic stent. I: Pressure-diameter relationship”, J. Appl. Mech., 71 (2004), 697–705 | DOI | Zbl
[4] Wang R., Ravi-Chandar K., “Mechanical response of a metallic aortic stent. II: A beam on elastic foundation model”, J. Appl. Mech., 71 (2004), 706–712 | DOI | Zbl
[5] Umscheid T., Stelter W. J., “Time-related alterations in shape, position, and structure of self-expanding, modular aortic stent-grafts”, J. Endovasc. Surg., 6 (1999), 17–32 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[6] Čanić S., Hartley C. J., Rosenstrauch D., Tambača J., Guidoboni G., Mikelic A., “Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation”, Ann. Biomed. Eng., 34 (2006), 575–592 | DOI
[7] Čanić S., Mikelic S. A., Lamponi D., Tambača J., “Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries”, SIAM J. Multiscale Analysis and Simulation, 3:3 (2005), 559–596 | DOI | MR
[8] Čanić S., Kim E. H., “Mathematical analysis of the quasilinear effects in a hyperbolic model of blood flow through compliant axisymmetric vessels”, Math. Methods in Appl. Sciences, 26 (2003), 1161–1186 | DOI | MR
[9] White F. M., Viscous Fluid Flow, McGraw-Hill, N. Y., 1974 | Zbl
[10] Smith N. P., Pullan A. J., Hunter P. J., “The generation of an anatomically accurate geometric coronary model”, Ann. Biomed. Eng., 28:1 (2000), 14–25 | DOI
[11] Smith N. P., Pullan A. J., Hunter P. J., “An anatomically based model of transient coronary blood flow in the heart”, SIAM J. Appl. Math., 62 (2002), 990–1018 | DOI | MR | Zbl
[12] Olufsen M., Peskin C., Kim W., Pedersen E., Nadim A., Larsen J., “Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”, Ann. Biomed. Eng., 28 (2000), 1281–1299 | DOI
[13] Marusic-Paloka E., “Fluid flow through a network of thin pipes”, Comptes Rendus de l'Academie des Sciences Paris. Serie II. Fascicule b. Mecanique, 329:2 (2001), 103–108 | Zbl
[14] Smoller J., Shock waves and reaction-diffusion equations, Springer-Verlag, N. Y., 1994 | MR
[15] Leveque R., Numerical Methods for Conservation Laws, Birkhäuser, Basel–Boston, 1992 | MR | Zbl
[16] Parent F. N., Godziachvilli V., Meier G. H., Parker F. M., Carter K., Gayle R. G., Demassi R. J., Gregory R. T., “Endograft limb occlusion and stenosis after {ANCURE} endovascular abdominal aneurysm repair”, J. of Vasc. Surg., 35:4 (2002), 686–690 | DOI
[17] Ku D. N., Giddens D. P., Zarins C. K., Glagov S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low and oscillating shear stress”, Atherosclerosis, 5 (1985), 293–302
[18] Moore J. E., Xu C., Glagov S., Zarins C.K., Ku D.N., “Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis”, Atherosclerosis, 110 (1994), 225–240 | DOI
[19] Haidekker M. A., White C. R., Frangos J. A., “Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step”, J. Biomech. Eng., 123:5 (2001), 455–463 | DOI
[20] Dyet J. F., Watts W. G., Ettles D. E., Nicholson A. A., “Mechanical properties of metallic stents: How do these properties influence the choice of stent for specific leisons?”, Cardiovasc. Interv. Radiology, 23 (2000), 47–54 | DOI