On the iterative method for solving a variational inequalities with inversely strongly monotone operators
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 23-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a boundary valued problem whose generalized statement is formulated as a mixed variational inequality in Hilbert space. The operator of this variational inequality is a sum of several inversely strongly monotone operators (which are not necessarily potential operators). The functional occurring in this variational inequality is also a sum of several lower semi-continuous convex proper functionals. For the solving of the considered variational inequality the decomposition iterative method is offered. The suggested method does not require the inversion of original operators. The convergence of this method is investigated.
@article{UZKU_2006_148_3_a1,
     author = {I. B. Badriev and O. A. Zadvornov},
     title = {On the iterative method for solving a~variational inequalities with inversely strongly monotone operators},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {23--41},
     year = {2006},
     volume = {148},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a1/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - O. A. Zadvornov
TI  - On the iterative method for solving a variational inequalities with inversely strongly monotone operators
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 23
EP  - 41
VL  - 148
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a1/
LA  - ru
ID  - UZKU_2006_148_3_a1
ER  - 
%0 Journal Article
%A I. B. Badriev
%A O. A. Zadvornov
%T On the iterative method for solving a variational inequalities with inversely strongly monotone operators
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 23-41
%V 148
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a1/
%G ru
%F UZKU_2006_148_3_a1
I. B. Badriev; O. A. Zadvornov. On the iterative method for solving a variational inequalities with inversely strongly monotone operators. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 3, pp. 23-41. http://geodesic.mathdoc.fr/item/UZKU_2006_148_3_a1/

[1] Badriev I. B., Zadvornov O. A., “Metody dekompozitsii dlya resheniya variatsionnykh neravenstv vtorogo roda s obratno silno monotonnymi operatorami”, Differents. uravneniya, 39:7 (2003), 888–895 | MR | Zbl

[2] Zadvornov O.A., “O skhodimosti poluyavnogo metoda s rasschepleniem dlya resheniya variatsionnykh neravenstv vtorogo roda”, Izv. vuzov. Matematika, 2005, no. 6, 61–70 | MR | Zbl

[3] Badriev I. B., Zadvornov O. A., “O skhodimosti iteratsionnogo metoda dvoistvennogo tipa resheniya smeshannykh variatsionnykh neravenstv”, Differents. uravneniya, 42:8 (2006), 1115–1122 | MR | Zbl

[4] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v nauchno-tekhnicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21

[5] Badriev I. B., Zadvornov O. A., Saddek A. M., “Issledovanie skhodimosti iteratsionnykh metodov resheniya nekotorykh variatsionnykh neravenstv s psevdomonotnnymi operatorami”, Differents. uravneniya, 37:7 (2001), 891–898 | MR | Zbl

[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp. | MR

[7] Browder F. E., Petryshin W. V., “The soluyion by iteration of nonlinear functional equations in Banach spaces”, Bull. Amer. Math. Soc., 72 (1966), 571–575 | DOI | MR | Zbl

[8] Opial Z., “Weak convergence of the sequence of successive approximations for nonexpansive mappings”, Bull. Amer. Math. Soc., 73 (1967), 591–597 | DOI | MR | Zbl

[9] Badriev I. B., Zadvornov O. A., Ismagilov L. N., “Primenenie metoda dekompozitsii dlya chislennogo resheniya nekotorykh nelineinykh statsionarnykh zadach teorii filtratsii”, Issledovaniya po prikladnoi matematike i informatike, vyp. 24, Kazan. gos. un-t, Kazan, 2003, 12–24

[10] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966, 430 pp. | MR

[11] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR