Local uniqueness of solution of a mixed boundary value problem for Riemann surfaces with branch-points
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 97-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A mixed boundary value problem for Riemann surfaces with branch-points, with boundary conditions depending on the parameter $x$ is investigated. Is is supposed that the known part of the boundary of the required surface is a polygon. We obtain an integral representation of solution to the problem; it depends on accessory parameters. Local uniqueness of the solution is proved.
@article{UZKU_2006_148_2_a9,
     author = {S. R. Nasyrov and I. Z. Faizov},
     title = {Local uniqueness of solution of a~mixed boundary value problem for {Riemann} surfaces with branch-points},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {97--108},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a9/}
}
TY  - JOUR
AU  - S. R. Nasyrov
AU  - I. Z. Faizov
TI  - Local uniqueness of solution of a mixed boundary value problem for Riemann surfaces with branch-points
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 97
EP  - 108
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a9/
LA  - ru
ID  - UZKU_2006_148_2_a9
ER  - 
%0 Journal Article
%A S. R. Nasyrov
%A I. Z. Faizov
%T Local uniqueness of solution of a mixed boundary value problem for Riemann surfaces with branch-points
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 97-108
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a9/
%G ru
%F UZKU_2006_148_2_a9
S. R. Nasyrov; I. Z. Faizov. Local uniqueness of solution of a mixed boundary value problem for Riemann surfaces with branch-points. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 97-108. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a9/

[1] Avkhadiev F. G., Aksentev L. A., Elizarov A. M., “Dostatochnye usloviya konechnolistnosti analiticheskikh funktsii i ikh prilozheniya”, Itogi nauki i tekhniki. Ser. Matem. analiz, 25, VINITI, M., 1987, 3–121

[2] Avkhadiev F. G., Aksentev L. A., Elizarov A. M., Nasyrov S. R., “Nauchnyi seminar po geometricheskoi teorii funktsii: osnovnye rezultaty dvukh poslednikh desyatiletii”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 7–38 | MR | Zbl

[3] Monakhov V. N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977, 424 pp. | MR

[4] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Kazan. matem. o-vo, Kazan, 2005, 297 pp. | Zbl

[5] Nasyrov S. R., O metode poligonalnoi approksimatsiei v smeshannykh obratnykh kraevykh zadachakh po parametru $x$, Dep. v VINITI 17.05.82, No 2459-82, Kazan. gos. un-t., Kazan, 1982, 48 pp.

[6] Nasyrov S. R., “Smeshannaya obratnaya kraevaya zadacha na rimanovykh poverkhnostyakh”, Izv. vuzov. Matematika, 1990, no. 10, 25–36 | MR | Zbl

[7] Nasyrov S. R., “Metod dvizhuschegosya razreza v smeshannykh obratnykh kraevykh zadachakh”, Konstr. teoriya funktsii i ee prilozheniya, Makhachkala, 1994, 71–73

[8] Tlyusten S. R., “Smeshannaya kraevaya zadacha so svobodnoi granitsei v neodnolistnykh oblastyakh”, Dinamika sploshnoi sredy, 76, Novosibirsk, 1986, 148–156 | MR | Zbl

[9] Tlyusten S. R., “Neodnolistnye otobrazheniya so svobodnoi granitsei”, Dinamika sploshnoi sredy, 86, Novosibirsk, 1988, 141–148 | MR

[10] Tlyusten S. R., “Apriornye otsenki reshenii smeshannoi kraevoi zadachi so svobodnoi granitsei dlya analiticheskikh funktsii”, Dinamika sploshnoi sredy, 92, Novosibirsk, 1989, 108–121 | MR | Zbl

[11] Tlyusten S. R., “Geometricheskie svoistva reshenii smeshannoi kraevoi zadachi so svobodnoi granitsei”, Dinamika sploshnoi sredy, 97, Novosibirsk, 1990, 114–123 | MR | Zbl

[12] Salimov R. B., Strezhneva E. V., “K resheniyu obratnoi smeshannoi kraevoi zadachi”, Tr. seminara po kraev. zadacham, 27, Izd-vo Kazan. un-ta, Kazan, 1992, 95–117 | MR

[13] Salimov R. B., Nasyrova E. V., Shabalin P. L., “Odnolistnaya razreshimost odnoi obratnoi smeshannoi kraevoi zadachi”, Izv. vuzov. Matematika, 1998, no. 4, 78–82 | MR

[14] Strezhneva E. V., “Dostatochnye usloviya odnolistnosti odnoi smeshannoi obratnoi kraevoi zadachi po parametru $x$ dlya odnosvyaznoi oblasti v sluchae poligona”, Teoriya funktsii i priblizhenii. Mezhvuz. sb. nauchn. tr., ch. 3., Izd-vo Saratov. un-ta, Saratov, 1995, 109–115

[15] Salimov R. B., Strezhneva E. V., Reshenie obratnoi kraevoi zadachi dlya dvusvyaznoi oblasti v vidoizmenennoi postanovke, Dep. v VINITI 29.12.90, No 6487-V90, Kazan, 1990, 26 pp.

[16] Galiullina G. R., Nasyrov S. R., “Uravnenie Gakhova dlya vneshnei smeshannoi obratnoi kraevoi zadachi po parametru $x$”, Izv. vuzov. Matematika, 2002, no. 10, 48–55 | MR | Zbl

[17] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR

[18] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR