The integral means spectrum and the law of the iterated logarithm for conformal mappings
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 85-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present survey paper is described most important results about estimates of the integral means for derivatives of conformal maps of the unit disk into simply connected domains on the complex plane. Detailed description of the results connected with estimates of the integral means spectrum near the origin and also near the point $t=-2$ is given. Results connected with Makarov's law of the iterated logarithm are described. A connection between the integral means spectrum and the law of iterated logarithm is shown. On this basis metrical properties of harmonic measure on Jordan curves are improved.
@article{UZKU_2006_148_2_a8,
     author = {I. R. Kayumov},
     title = {The integral means spectrum and the law of the iterated logarithm for conformal mappings},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {85--96},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - The integral means spectrum and the law of the iterated logarithm for conformal mappings
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 85
EP  - 96
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/
LA  - ru
ID  - UZKU_2006_148_2_a8
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T The integral means spectrum and the law of the iterated logarithm for conformal mappings
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 85-96
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/
%G ru
%F UZKU_2006_148_2_a8
I. R. Kayumov. The integral means spectrum and the law of the iterated logarithm for conformal mappings. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 85-96. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/

[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[2] Prawitz H., “Über die Mittelwerte analytischer Funktionen”, Arkiv Mat. Astr. Fys., 20 (1927–1928), 1–12

[3] Littlewood J., “On inequalities in the theory of functions”, Proc. London Math. Soc., 23, 1925, 481–519 | DOI | MR | Zbl

[4] Feng J., MacGregor T. H., “Estimates of integral means of the derivatives of univalent functions”, J. Analyse Math., 29 (1976), 203–231 | DOI | Zbl

[5] Makarov N. G., “A note on the integral means of the derivative in conformal mapping”, Proc. Amer. Math. Soc., 96, 1986, 233–236 | DOI | MR | Zbl

[6] Carleson L., Jones P., “On coefficient problems for univalent functions”, Duke math. J., 66:2 (1992), 169–206 | DOI | MR | Zbl

[7] Makarov N. G., “Conformal mapping and Hausdorff measures”, Ark. Mat., 25 (1987), 41–89 | DOI | MR | Zbl

[8] Pommerenke Ch., “On boundary size and conformal mapping”, Complex Variables, 12 (1989), 231–236 | DOI | MR | Zbl

[9] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR | Zbl

[10] Bertilsson D., On Brennan's conjecture in conformal mapping, Doctoral Thesis, Royal Inst. of Tech., Stockholm, 1999 | MR | Zbl

[11] Makarov N. G., “Fine structure of harmonic measure”, St. Petersbg. Math. J., 10:2 (1999), 217–268 | MR

[12] Hedenmalm H., Shimorin S., “On the universal integral means spectrum of conformal mappings near the origin”, Proc. Amer. Math. Soc. (to appear) | MR

[13] Rohde S., Hausdorffmas und Randverhalten analytischer Functionen, Thesis, Technische Universität, Berlin, 1989

[14] Kraetzer Ph., “Experimental bounds for the universal integral means spectrum of conformal maps”, Complex Variables, 31 (1996), 305–309 | DOI | MR | Zbl

[15] Kayumov I. R., “Lower estimates for integral means of univalent functions”, Arkiv för matematik (to appear)

[16] Makarov N. G., “On the distortion of boundary sets under conformal mappings”, Proc. London Math. Soc., 51, no. 3, 1985, 369–384 | DOI | MR | Zbl

[17] Przytycki F., Urbanski M., Zdunik A., “Harmonic, Gibbs, and Hausdorff measures on repellers for holomorphic maps, I”, Ann. of Math., 2 (1989), 1–40 | DOI | MR | Zbl

[18] Przytycki F., Urbanski M., Zdunik A., “Harmonic, Gibbs, and Hausdorff measures on repellers for holomorphic maps, II”, Studia Math., 97 (1991), 189–225 | MR | Zbl

[19] Kayumov I. R., “The law of the iterated logarithm for locally univalent functions”, Ann. Acad. Sci. Fennicae, 27 (2002), 357–364 | MR | Zbl

[20] Clunie J., Pommerenke Ch., “On the coefficients of univalent functions”, Michigan Math. J., 14 (1967), 71–78 | DOI | MR | Zbl

[21] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR

[22] Kayumov I. R., “K zakonu povtornogo logarifma dlya konformnykh otobrazhenii”, Matem. zametki, 79:1 (2006), 150–153 | DOI | MR | Zbl

[23] Carleson L., “On the distortion of sets on a Jordan curve under conformal mapping”, Duke Math. J., 40:3 (1973), 547–559 | DOI | MR | Zbl

[24] Hedenmalm H., Kayumov I. R., “On the Makarov law of the iterated logarithm”, Proc. Amer. Math. Soc. (to appear) | MR

[25] Brennan J. E., “On the integrability of the derivative in conformal mapping”, J. London Math. Soc., 18 (1978), 261–272 | DOI | MR | Zbl

[26] Carleson L., Makarov N. G., “Some results connected with Brennan's conjecture”, Ark. Mat., 32 (1994), 33–62 | DOI | MR | Zbl

[27] Barański K., Volberg A., Zdunik A., “Brennan's conjecture and the Mandelbrot set”, Int. Math. Res. Notice, 12 (1998), 9–600 | MR

[28] Gnuschke-Hauschild D., Pommerenke Ch., “On Bloch functions and gap series”, Reine Angew. Math., 367 (1986), 172–186 | MR | Zbl

[29] Kayumov I. R., “Lower estimates for the integral means spectrum”, Complex Variables, 44 (2001), 165–171 | DOI | MR | Zbl

[30] Kayumov I. R., “Lower estimate for the integral means spectrum for $p=-1$”, Proc. Amer. Math. Soc., 130, no. 4, 2001, 1005–1007 | DOI | MR

[31] Kayumov I. R., “Spektr integralnykh srednikh i modifitsirovannaya funktsiya Besselya nulevogo poryadka”, Algebra i Analiz, 17:3 (2005), 107–123 | MR

[32] Kayumov I. R., “O gipoteze Brennana dlya spetsialnogo klassa funktsii”, Matem. zametki, 78:4 (2005), 537–541 | DOI | MR | Zbl