@article{UZKU_2006_148_2_a8,
author = {I. R. Kayumov},
title = {The integral means spectrum and the law of the iterated logarithm for conformal mappings},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {85--96},
year = {2006},
volume = {148},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/}
}
TY - JOUR AU - I. R. Kayumov TI - The integral means spectrum and the law of the iterated logarithm for conformal mappings JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 85 EP - 96 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/ LA - ru ID - UZKU_2006_148_2_a8 ER -
%0 Journal Article %A I. R. Kayumov %T The integral means spectrum and the law of the iterated logarithm for conformal mappings %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 85-96 %V 148 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/ %G ru %F UZKU_2006_148_2_a8
I. R. Kayumov. The integral means spectrum and the law of the iterated logarithm for conformal mappings. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 85-96. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a8/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR
[2] Prawitz H., “Über die Mittelwerte analytischer Funktionen”, Arkiv Mat. Astr. Fys., 20 (1927–1928), 1–12
[3] Littlewood J., “On inequalities in the theory of functions”, Proc. London Math. Soc., 23, 1925, 481–519 | DOI | MR | Zbl
[4] Feng J., MacGregor T. H., “Estimates of integral means of the derivatives of univalent functions”, J. Analyse Math., 29 (1976), 203–231 | DOI | Zbl
[5] Makarov N. G., “A note on the integral means of the derivative in conformal mapping”, Proc. Amer. Math. Soc., 96, 1986, 233–236 | DOI | MR | Zbl
[6] Carleson L., Jones P., “On coefficient problems for univalent functions”, Duke math. J., 66:2 (1992), 169–206 | DOI | MR | Zbl
[7] Makarov N. G., “Conformal mapping and Hausdorff measures”, Ark. Mat., 25 (1987), 41–89 | DOI | MR | Zbl
[8] Pommerenke Ch., “On boundary size and conformal mapping”, Complex Variables, 12 (1989), 231–236 | DOI | MR | Zbl
[9] Pommerenke Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992 | MR | Zbl
[10] Bertilsson D., On Brennan's conjecture in conformal mapping, Doctoral Thesis, Royal Inst. of Tech., Stockholm, 1999 | MR | Zbl
[11] Makarov N. G., “Fine structure of harmonic measure”, St. Petersbg. Math. J., 10:2 (1999), 217–268 | MR
[12] Hedenmalm H., Shimorin S., “On the universal integral means spectrum of conformal mappings near the origin”, Proc. Amer. Math. Soc. (to appear) | MR
[13] Rohde S., Hausdorffmas und Randverhalten analytischer Functionen, Thesis, Technische Universität, Berlin, 1989
[14] Kraetzer Ph., “Experimental bounds for the universal integral means spectrum of conformal maps”, Complex Variables, 31 (1996), 305–309 | DOI | MR | Zbl
[15] Kayumov I. R., “Lower estimates for integral means of univalent functions”, Arkiv för matematik (to appear)
[16] Makarov N. G., “On the distortion of boundary sets under conformal mappings”, Proc. London Math. Soc., 51, no. 3, 1985, 369–384 | DOI | MR | Zbl
[17] Przytycki F., Urbanski M., Zdunik A., “Harmonic, Gibbs, and Hausdorff measures on repellers for holomorphic maps, I”, Ann. of Math., 2 (1989), 1–40 | DOI | MR | Zbl
[18] Przytycki F., Urbanski M., Zdunik A., “Harmonic, Gibbs, and Hausdorff measures on repellers for holomorphic maps, II”, Studia Math., 97 (1991), 189–225 | MR | Zbl
[19] Kayumov I. R., “The law of the iterated logarithm for locally univalent functions”, Ann. Acad. Sci. Fennicae, 27 (2002), 357–364 | MR | Zbl
[20] Clunie J., Pommerenke Ch., “On the coefficients of univalent functions”, Michigan Math. J., 14 (1967), 71–78 | DOI | MR | Zbl
[21] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 832 pp. | MR
[22] Kayumov I. R., “K zakonu povtornogo logarifma dlya konformnykh otobrazhenii”, Matem. zametki, 79:1 (2006), 150–153 | DOI | MR | Zbl
[23] Carleson L., “On the distortion of sets on a Jordan curve under conformal mapping”, Duke Math. J., 40:3 (1973), 547–559 | DOI | MR | Zbl
[24] Hedenmalm H., Kayumov I. R., “On the Makarov law of the iterated logarithm”, Proc. Amer. Math. Soc. (to appear) | MR
[25] Brennan J. E., “On the integrability of the derivative in conformal mapping”, J. London Math. Soc., 18 (1978), 261–272 | DOI | MR | Zbl
[26] Carleson L., Makarov N. G., “Some results connected with Brennan's conjecture”, Ark. Mat., 32 (1994), 33–62 | DOI | MR | Zbl
[27] Barański K., Volberg A., Zdunik A., “Brennan's conjecture and the Mandelbrot set”, Int. Math. Res. Notice, 12 (1998), 9–600 | MR
[28] Gnuschke-Hauschild D., Pommerenke Ch., “On Bloch functions and gap series”, Reine Angew. Math., 367 (1986), 172–186 | MR | Zbl
[29] Kayumov I. R., “Lower estimates for the integral means spectrum”, Complex Variables, 44 (2001), 165–171 | DOI | MR | Zbl
[30] Kayumov I. R., “Lower estimate for the integral means spectrum for $p=-1$”, Proc. Amer. Math. Soc., 130, no. 4, 2001, 1005–1007 | DOI | MR
[31] Kayumov I. R., “Spektr integralnykh srednikh i modifitsirovannaya funktsiya Besselya nulevogo poryadka”, Algebra i Analiz, 17:3 (2005), 107–123 | MR
[32] Kayumov I. R., “O gipoteze Brennana dlya spetsialnogo klassa funktsii”, Matem. zametki, 78:4 (2005), 537–541 | DOI | MR | Zbl