Mathematical model and numerical solution of filtration problem for two immiscible fluids
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 65-76
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              In this paper, a one-dimensional nonlinear time-dependent problem is studied, the problem being a mathematical model of a flow of two immiscible fluids in porous medium. Fluid flow is described by two nonlinear parabolic degenerated differential equations, which act in subdomains separated by a priori unknown moving boundary. The main feature of this problem is that both functions and fluxes have jumps through unknown boundary. On this boundary some additional conditions are imposed to connect jumps of functions with jumps of fluxes. The studied problem is formulated in a fixed domain. Scalar relations between values of solution functions on a moving boundary give additional conditions for finding jumps of these functions. The implicit finite-differences approximation of the problem is constructed and algorithm for its implementation is suggested. The numerical experiments demonstrate the adequateness of constructed model to physical process and good efficiency of proposed algorithm.
            
            
            
          
        
      @article{UZKU_2006_148_2_a6,
     author = {R. F. Kadyrov and A. V. Lapin},
     title = {Mathematical model and numerical solution of filtration problem for two immiscible fluids},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {65--76},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a6/}
}
                      
                      
                    TY - JOUR AU - R. F. Kadyrov AU - A. V. Lapin TI - Mathematical model and numerical solution of filtration problem for two immiscible fluids JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 65 EP - 76 VL - 148 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a6/ LA - ru ID - UZKU_2006_148_2_a6 ER -
%0 Journal Article %A R. F. Kadyrov %A A. V. Lapin %T Mathematical model and numerical solution of filtration problem for two immiscible fluids %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 65-76 %V 148 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a6/ %G ru %F UZKU_2006_148_2_a6
R. F. Kadyrov; A. V. Lapin. Mathematical model and numerical solution of filtration problem for two immiscible fluids. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 65-76. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a6/
