Central limit theorem for endomorphisms of the Euclidean space
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 54-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $W$ be a non-degenerated integer-valued matrix such that $|\det W|>1$, $f(t)=$ $=~f(t_1,\ldots,t_d)$ be a real function periodic with respect to any argument, $f$ satisfy the condition $|f(t)-f(t')|\le A\|t-t'\|$ where $A$$\mathrm{const}$, $t,t'\in\overline\Omega_d=\{t:0\le t_i\le1,\ i=1,\ldots,d\}$. A central limit theorem for the sequence $(f(tW^n))$ with the rest $O(1/n^{1/2-\varepsilon})$ is established where $\varepsilon$ is an arbitrarily small positive number.
@article{UZKU_2006_148_2_a5,
     author = {V. T. Dubrovin},
     title = {Central limit theorem for endomorphisms of the {Euclidean} space},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {54--64},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a5/}
}
TY  - JOUR
AU  - V. T. Dubrovin
TI  - Central limit theorem for endomorphisms of the Euclidean space
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 54
EP  - 64
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a5/
LA  - ru
ID  - UZKU_2006_148_2_a5
ER  - 
%0 Journal Article
%A V. T. Dubrovin
%T Central limit theorem for endomorphisms of the Euclidean space
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 54-64
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a5/
%G ru
%F UZKU_2006_148_2_a5
V. T. Dubrovin. Central limit theorem for endomorphisms of the Euclidean space. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 54-64. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a5/

[1] Leonov V. P., Nekotorye prilozheniya starshikh semiinvariantov k teorii sluchainykh protsessov, Nauka, M., 1964, 68 pp. | MR | Zbl

[2] Postnikov A. G., “Ergodicheskie voprosy teorii sravnenii i teorii diofantovykh priblizhenii”, Tr. Matem. in-ta im. V. A. Steklova, 82, Nauka, M., 1966, 112 s. | MR

[3] Dubrovin V. T., Moskvin D. A., “O raspredelenii drobnykh dolei odnogo klassa preobrazovanii evklidovykh prostranstv”, Veroyatn. metody i kibernetika, Izd-vo Kazan. un-ta, Kazan, 1971, 45–56 | MR

[4] Dubrovin V. T., Moskvin D. A., “Tsentralnaya predelnaya teorema dlya summ funktsii ot posledovatelnostei s pereimenovaniem”, Teoriya veroyatn. i eë primenenie, XXIV:3 (1979), 553–563 | MR

[5] Dubrovin V. T., “Tsentralnaya predelnaya teorema dlya summ funktsii ot slabozavisimykh sluchainykh velichin”, Veroyatn. metody i kibernetika, 9, Izd-vo Kazan. un-ta, Kazan, 1971, 21–33 | MR

[6] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, GITTL, M.-L., 1949, 264 s. | MR

[7] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.