@article{UZKU_2006_148_2_a4,
author = {R. A. Daishev and V. A. Karin},
title = {Equilibrium distributions of the charged fluids in the space-times with a~simple-transitive groups of homothetic motions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {37--53},
year = {2006},
volume = {148},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/}
}
TY - JOUR AU - R. A. Daishev AU - V. A. Karin TI - Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 37 EP - 53 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/ LA - ru ID - UZKU_2006_148_2_a4 ER -
%0 Journal Article %A R. A. Daishev %A V. A. Karin %T Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 37-53 %V 148 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/ %G ru %F UZKU_2006_148_2_a4
R. A. Daishev; V. A. Karin. Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 37-53. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/
[1] Carr B. J., Coley A. A., “Self-similarity in general relativity”, Class. Quantum Grav., 16:7 (1999), R31–R71 | DOI | MR | Zbl
[2] Carot J., Sintes A. M., “Homothetic perfect fluid space-times”, Class. Quantum Grav., 14:5 (1997), 1183–1205 | DOI | MR | Zbl
[3] Burd A., Coley A. A., “Viscous fluid cosmology”, Class. Quantum Grav., 11:1 (1994), 83–105 | DOI | MR | Zbl
[4] Wainright J., Yaremovicz P., “Killing vector fields and Eistein – Maxwell field equations with perfect-fluid source”, Gen. Rel. Grav., 7:4 (1976), 345 | MR
[5] Ozsváth I., “New homogeneous solutions of Einstein's field equations with incoherent mutter”, Abhandl. Math.-naturwiss., 1965, no. 1, 1–41
[6] Ozsváth I., “Homogeneous solutions of the Einstein-Maxwell equations”, J. Math. Phys., 6:8 (1965), 1255–1255 | DOI | MR
[7] Hiromoto R. E., Ozsváth I., “On homogeneous solutions of Einstein's field equations”, Gen. Rel. Grav., 9:4 (1978), 299–327 | DOI | MR | Zbl
[8] Daishev R. A., “Odnorodnye resheniya uravnenii Einshteina s idealnoi zaryazhennoi zhidkostyu”, Izv. vuzov. Fizika, 1984, no. 12, 74–77
[9] Daishev R. A., “Izometricheskie dvizheniya idealnoi zaryazhennoi zhidkosti”, Izv. vuzov. Fizika, 1987, no. 10, 25–29 | MR
[10] Daishev R.A., “Odnorodnye resheniya uravnenii Einshteina dlya idealnoi zhidkosti”, Ukrainskii fiz. zhurn., 29:8 (1984), 1163–1170 | MR
[11] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 495 pp. | MR