Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 37-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of finding of the exact solutions of the self-consistent Einstein–Maxwell equations system are suggested. It is supposed that the space-time admits simple-transitive group of homothetic transformations and the source of such space-times is the perfect fluid. The proposed method is the generalization of Ozsvath's method of finding of the homogeneous solutions of Einstein field equations. It is supposed also that the fluid's velocity vector is collinear to time-like vector $\mathbf Y$ of the Lie algebra of the group $H_r.$ Under above assumption all exact solutions of the system are found.
@article{UZKU_2006_148_2_a4,
     author = {R. A. Daishev and V. A. Karin},
     title = {Equilibrium distributions of the charged fluids in the space-times with a~simple-transitive groups of homothetic motions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {37--53},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/}
}
TY  - JOUR
AU  - R. A. Daishev
AU  - V. A. Karin
TI  - Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 37
EP  - 53
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/
LA  - ru
ID  - UZKU_2006_148_2_a4
ER  - 
%0 Journal Article
%A R. A. Daishev
%A V. A. Karin
%T Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 37-53
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/
%G ru
%F UZKU_2006_148_2_a4
R. A. Daishev; V. A. Karin. Equilibrium distributions of the charged fluids in the space-times with a simple-transitive groups of homothetic motions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 37-53. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a4/

[1] Carr B. J., Coley A. A., “Self-similarity in general relativity”, Class. Quantum Grav., 16:7 (1999), R31–R71 | DOI | MR | Zbl

[2] Carot J., Sintes A. M., “Homothetic perfect fluid space-times”, Class. Quantum Grav., 14:5 (1997), 1183–1205 | DOI | MR | Zbl

[3] Burd A., Coley A. A., “Viscous fluid cosmology”, Class. Quantum Grav., 11:1 (1994), 83–105 | DOI | MR | Zbl

[4] Wainright J., Yaremovicz P., “Killing vector fields and Eistein – Maxwell field equations with perfect-fluid source”, Gen. Rel. Grav., 7:4 (1976), 345 | MR

[5] Ozsváth I., “New homogeneous solutions of Einstein's field equations with incoherent mutter”, Abhandl. Math.-naturwiss., 1965, no. 1, 1–41

[6] Ozsváth I., “Homogeneous solutions of the Einstein-Maxwell equations”, J. Math. Phys., 6:8 (1965), 1255–1255 | DOI | MR

[7] Hiromoto R. E., Ozsváth I., “On homogeneous solutions of Einstein's field equations”, Gen. Rel. Grav., 9:4 (1978), 299–327 | DOI | MR | Zbl

[8] Daishev R. A., “Odnorodnye resheniya uravnenii Einshteina s idealnoi zaryazhennoi zhidkostyu”, Izv. vuzov. Fizika, 1984, no. 12, 74–77

[9] Daishev R. A., “Izometricheskie dvizheniya idealnoi zaryazhennoi zhidkosti”, Izv. vuzov. Fizika, 1987, no. 10, 25–29 | MR

[10] Daishev R.A., “Odnorodnye resheniya uravnenii Einshteina dlya idealnoi zhidkosti”, Ukrainskii fiz. zhurn., 29:8 (1984), 1163–1170 | MR

[11] Petrov A. Z., Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966, 495 pp. | MR