@article{UZKU_2006_148_2_a14,
author = {R. G. Salahudinov},
title = {Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {151--162},
year = {2006},
volume = {148},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/}
}
TY - JOUR AU - R. G. Salahudinov TI - Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2006 SP - 151 EP - 162 VL - 148 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/ LA - en ID - UZKU_2006_148_2_a14 ER -
%0 Journal Article %A R. G. Salahudinov %T Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2006 %P 151-162 %V 148 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/ %G en %F UZKU_2006_148_2_a14
R. G. Salahudinov. Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 151-162. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/
[1] Avkhadiev F. G., “Solution of generalizated St Venant problem”, Sborn. Math., 189:12 (1998), 1739–1748 | DOI | MR | Zbl
[2] Avkhadiev F. G., “Geometric characteristics of domains equivalent to the norms of some embedding operators”, in Russian, Proc. of the Intern. Conf. and Chebyshev Lectures, 1, Moscow State University, M., 1996, 12–14
[3] Kohler-Jobin M.-Th., “Symmetrization with equal Dirichlet integrals”, SIAM J. Math. Anal., 13 (1982), 153–161 | DOI | MR | Zbl
[4] Salahudinov R. G., “Isoperimetric inequality for torsional rigidity in the complex plane”, J. of Inequal. and Appl., 6 (2001), 253–260 | MR | Zbl
[5] Bañuelos R., van den Berg M., Carroll T., “Torsional Rigidity and Expected Lifetime of Brownian motion”, J. London Math. Soc., 66:2 (2002), 499–512 | DOI | MR | Zbl
[6] Davies E. B., “A review of Hardy Inequalities”, Operator Theory: Adv. Appl., 110 (1989), 55-67 | MR
[7] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston, 1980, 228 pp. | MR | Zbl
[8] Kohler-Jobin M.-Th., “Une propriété de monotonie isopérimétrique qui contient plusieurs théorémes classiques”, C.R. Acad. Sci. Paris, 284:3 (1977), 917–920 | MR | Zbl
[9] Bandle C., “Bounds of the solutions of boundary value problems”, J. of Math. Anal. and Appl., 54 (1976), 706–716 | DOI | MR | Zbl
[10] Kohler-Jobin M.-Th., “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl
[11] Hayman W. K., “Some bounds for the principal frequency”, Appl. Anal., 7 (1978), 247–254 | DOI | MR | Zbl
[12] Hersch J., “Isoperimetric monotonicity – some properties and conjectures (connection between Isoperimetric Inequalities)”, SIAM REV., 30:4 (1988), 551–577 | DOI | MR | Zbl
[13] Bandle C., “Estimates for the Green's functions of Elliptic Operators”, SIAM J. Math. Anal., 9 (1978), 1126–1136 | DOI | MR | Zbl
[14] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. of Inequal. and Appl., 7:4 (2002), 593–601 | MR | Zbl
[15] Leavitt J., Ungar P., “Circle supports the largest sandpile”, Comment. Pure Appl. Math., 15 (1962), 35–37 | DOI | MR | Zbl
[16] Avkhadiev F. G., Salahudinov R. G., “Bilateral Isoperimetric inequalities for boundary moments of plane domains”, Lobachevskii J. of Mathematics, 9 (2001), 3–5 ; URL: http://www.ljm.ksu.ru | MR | Zbl
[17] Schmidt E., “Über das isoperimetrische Problem im Raum von $n$ Dimensionen”, Math. Z., 44 (1938), 689–788 | DOI | MR