Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 151-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The main goal of the paper is to prove that $L^p$-norms of $dist(x,\partial G)$ and $dist^{-1}(x,\partial G)$ are decreasing functions of $p$, where $G$ is a domain in ${\mathbb R}^n(n\ge2)$. We also obtain a sharp estimation of the rate of decreasing for these norms using $L^p$ —norms of the distance function for a consistent ball. We prove a new isoperimetric inequality for $L^p$ —norms of $dist(x,\partial G)$, this inequality is analogous to the inequality of $L^p$–norms of the conformal radii (see Avkhadiev F.G., Salahudinov R.G. // J. of Inequal. & \rm Appl. – 2002. – V. 7, No 4. – P. 593–601). Note that $L^2$-norm of $dist(x,\partial G)$ plays an important role to investigate the torsional rigidity in Mathematical Physics (see, for instance, Avkhadiev F.G. // Sbornik: Math. – 1998. – V. 189, No 12. – P. 1739–1748; Banuelos R., van den Berg M., Carroll T. // J. London Math. Soc. – 2002. – V. 66, No 2. – P. 499–512). As a consequence we get new inequalities in the torsional rigidity problem. Also we generalize the $n$-dimensional isoperimetric inequality.
@article{UZKU_2006_148_2_a14,
     author = {R. G. Salahudinov},
     title = {Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {151--162},
     year = {2006},
     volume = {148},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/}
}
TY  - JOUR
AU  - R. G. Salahudinov
TI  - Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 151
EP  - 162
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/
LA  - en
ID  - UZKU_2006_148_2_a14
ER  - 
%0 Journal Article
%A R. G. Salahudinov
%T Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 151-162
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/
%G en
%F UZKU_2006_148_2_a14
R. G. Salahudinov. Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 151-162. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/

[1] Avkhadiev F. G., “Solution of generalizated St Venant problem”, Sborn. Math., 189:12 (1998), 1739–1748 | DOI | MR | Zbl

[2] Avkhadiev F. G., “Geometric characteristics of domains equivalent to the norms of some embedding operators”, in Russian, Proc. of the Intern. Conf. and Chebyshev Lectures, 1, Moscow State University, M., 1996, 12–14

[3] Kohler-Jobin M.-Th., “Symmetrization with equal Dirichlet integrals”, SIAM J. Math. Anal., 13 (1982), 153–161 | DOI | MR | Zbl

[4] Salahudinov R. G., “Isoperimetric inequality for torsional rigidity in the complex plane”, J. of Inequal. and Appl., 6 (2001), 253–260 | MR | Zbl

[5] Bañuelos R., van den Berg M., Carroll T., “Torsional Rigidity and Expected Lifetime of Brownian motion”, J. London Math. Soc., 66:2 (2002), 499–512 | DOI | MR | Zbl

[6] Davies E. B., “A review of Hardy Inequalities”, Operator Theory: Adv. Appl., 110 (1989), 55-67 | MR

[7] Bandle C., Isoperimetric inequalities and applications, Pitman Advanced Publishing Program, Boston, 1980, 228 pp. | MR | Zbl

[8] Kohler-Jobin M.-Th., “Une propriété de monotonie isopérimétrique qui contient plusieurs théorémes classiques”, C.R. Acad. Sci. Paris, 284:3 (1977), 917–920 | MR | Zbl

[9] Bandle C., “Bounds of the solutions of boundary value problems”, J. of Math. Anal. and Appl., 54 (1976), 706–716 | DOI | MR | Zbl

[10] Kohler-Jobin M.-Th., “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl

[11] Hayman W. K., “Some bounds for the principal frequency”, Appl. Anal., 7 (1978), 247–254 | DOI | MR | Zbl

[12] Hersch J., “Isoperimetric monotonicity – some properties and conjectures (connection between Isoperimetric Inequalities)”, SIAM REV., 30:4 (1988), 551–577 | DOI | MR | Zbl

[13] Bandle C., “Estimates for the Green's functions of Elliptic Operators”, SIAM J. Math. Anal., 9 (1978), 1126–1136 | DOI | MR | Zbl

[14] Avkhadiev F. G., Salahudinov R. G., “Isoperimetric inequalities for conformal moments of plane domains”, J. of Inequal. and Appl., 7:4 (2002), 593–601 | MR | Zbl

[15] Leavitt J., Ungar P., “Circle supports the largest sandpile”, Comment. Pure Appl. Math., 15 (1962), 35–37 | DOI | MR | Zbl

[16] Avkhadiev F. G., Salahudinov R. G., “Bilateral Isoperimetric inequalities for boundary moments of plane domains”, Lobachevskii J. of Mathematics, 9 (2001), 3–5 ; URL: http://www.ljm.ksu.ru | MR | Zbl

[17] Schmidt E., “Über das isoperimetrische Problem im Raum von $n$ Dimensionen”, Math. Z., 44 (1938), 689–788 | DOI | MR