Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 151-162

Voir la notice du chapitre de livre provenant de la source Math-Net.Ru

The main goal of the paper is to prove that $L^p$-norms of $dist(x,\partial G)$ and $dist^{-1}(x,\partial G)$ are decreasing functions of $p$, where $G$ is a domain in ${\mathbb R}^n(n\ge2)$. We also obtain a sharp estimation of the rate of decreasing for these norms using $L^p$ —norms of the distance function for a consistent ball. We prove a new isoperimetric inequality for $L^p$ —norms of $dist(x,\partial G)$, this inequality is analogous to the inequality of $L^p$–norms of the conformal radii (see Avkhadiev F.G., Salahudinov R.G. // J. of Inequal. \rm Appl. – 2002. – V. 7, No 4. – P. 593–601). Note that $L^2$-norm of $dist(x,\partial G)$ plays an important role to investigate the torsional rigidity in Mathematical Physics (see, for instance, Avkhadiev F.G. // Sbornik: Math. – 1998. – V. 189, No 12. – P. 1739–1748; Banuelos R., van den Berg M., Carroll T. // J. London Math. Soc. – 2002. – V. 66, No 2. – P. 499–512). As a consequence we get new inequalities in the torsional rigidity problem. Also we generalize the $n$-dimensional isoperimetric inequality.
@article{UZKU_2006_148_2_a14,
     author = {R. G. Salahudinov},
     title = {Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {151--162},
     publisher = {mathdoc},
     volume = {148},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/}
}
TY  - JOUR
AU  - R. G. Salahudinov
TI  - Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 151
EP  - 162
VL  - 148
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/
LA  - en
ID  - UZKU_2006_148_2_a14
ER  - 
%0 Journal Article
%A R. G. Salahudinov
%T Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 151-162
%V 148
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/
%G en
%F UZKU_2006_148_2_a14
R. G. Salahudinov. Isoperimetric inequalities for $l^p$-norms of the distance function to the boundary. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 151-162. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a14/