The addition of subsets to constant width bodies
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 132-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We research a well-known existence problem of constant width bodies which contain the given bounded set. We have got a formula for such bodies and a criteria of uniqueness for constant width body which contain a given bounded set.
@article{UZKU_2006_148_2_a12,
     author = {E. S. Polovinkin and S. V. Sidenko},
     title = {The addition of subsets to constant width bodies},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {132--143},
     year = {2006},
     volume = {148},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a12/}
}
TY  - JOUR
AU  - E. S. Polovinkin
AU  - S. V. Sidenko
TI  - The addition of subsets to constant width bodies
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 132
EP  - 143
VL  - 148
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a12/
LA  - ru
ID  - UZKU_2006_148_2_a12
ER  - 
%0 Journal Article
%A E. S. Polovinkin
%A S. V. Sidenko
%T The addition of subsets to constant width bodies
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 132-143
%V 148
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a12/
%G ru
%F UZKU_2006_148_2_a12
E. S. Polovinkin; S. V. Sidenko. The addition of subsets to constant width bodies. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 2, pp. 132-143. http://geodesic.mathdoc.fr/item/UZKU_2006_148_2_a12/

[1] Euler L., “De curvis triangularibus”, Acta Acad. Sci. Imp. Petrop., 2 (1778), 3–30

[2] Minkowski H., Geometrie der Zahlen, Teubner, Leipzig–Berlin, 1910

[3] Minkowski H., “Theorie der konvexen Körper, insbesondere”, Begründung ihres Oberflächenbegriffs Gesammeite Abhandlungen, Bd. 2, Teubner, Leipzig–Berlin, 1911, 131–229

[4] Minkowski H., “O telakh postoyannoi shiriny”, Matem. sb., 25 (1905), 505–508 ; Gesammeite Abhandlungen, Bd. 2, Teubner, Leipzig–Berlin, 1911, 277–279 | Zbl

[5] Blaschke W., Hessenberg G., “Lehsätze über konvexe Körper”, Jber. Deutsch. Math. Verein, 26 (1917), 215–220 | Zbl

[6] Pál J., “Über ein elementares Variationproblem”, Math.-Fys. Medd. Danske Vid. Selsk., 3:2 (1920–1921), 1–35

[7] Lebesgue H., “Sur quelques questions de minimum, relatives aux courbes orbifornes, et sur leurs rapports avec le calcul des variations”, J. Math. Pures Appl., 4:8 (1921), 67–96 | Zbl

[8] Reinhardt K., “Extremale Polygone gegbenen Durchmessers”, Jber. Deutsch. Math. Verein, 31 (1922), 251–270

[9] Kritikos N., “Über konvexe Flächen und einschließende Kugeln”, Math. Ann., 96 (1927), 583–586 | DOI | MR

[10] Jessen B., “Über Konvexe Punktmengen konstanter Breite”, Math. Z., 29 (1928), 378–380 | Zbl

[11] Bonnezen T., Fenkhel V., Teoriya vypuklykh tel, FAZIS, M., 2002; Bonnesen T., Fenchel W., Theorie der konvexen körper, Verlag von Julius Springer, Berlin, 1934 | MR

[12] Eggleston H. G., “Sets of constant width in finite dimentional Banach spaces”, no. 3, 1965, 163–172 | MR | Zbl

[13] Chakerian G. D., Groemer H., “Convex bodies of constant width”, Convexity and its Applications, eds. P. M. Gruber, J. M. Wills, Basel–Boston–Stuttgart, 1983 | MR

[14] Karasev R. N., “O kharakterizatsii porozhdayuschikh mnozhestv”, Modelirovanie i analiz informatsionnykh sistem, 8:2 (2001), 3–9, Yaroslavl, YarGU | MR

[15] Polovinkin E. S., “O telakh postoyannoi shiriny”, Dokl. RAN, 397:3 (2004), 313–315 | MR

[16] Polovinkin E. S., Sidenko S. V., “Dopolnenie tetraedra do tela postoyannoi shiriny”, Nekotorye problemy fundamentalnoi i prikladnoi matematiki i ikh prilozheniya v zadachakh fiziki, Mezhduved. sb. st., MFTI, M., 2005, 184–198

[17] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.

[18] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[19] Polovinkin E. S., “O silno vypuklykh mnozhestvakh i silno vypuklykh funktsiyakh”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya, 61, Izd-vo VINITI, M., 1999, 66-138

[20] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, FIZMATLIT, M., 2004, 436 pp.

[21] Dantser L., Gryumbaum B., Kli V., Teorema Khelli i ee primeneniya, Mir, M., 1968, 159 pp. | MR