Formation dynamics of the radial-angular structure of the Rydberg wave-packet in a resonant microwave field.
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 1, pp. 83-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We discuss a very interesting experiment by H. Maeda, T. F. Gallagher, PRL 92, 133004 (2004), in which Li Rydberg atoms were exposed to an action of a resonant microwave filed (switched-on at $t=0$). Then, in a varying time $t_0$, the atoms were ionized by a strong sub-picosecond Half-Cycle Pulse. The probability of ionization $w_i$ was measured in its dependence on $t_0$ and the function $w_i(t_0)$ was found to be oscillating with the classical Rydberg-atom Kepler period. The original author's explanation of this effect was based on the assumption that the resonant microwave field provided formation of a localized Rydberg wave packet moving along the classical Kepler trajectory and responsible for the observed periodical dependence of $w_i(t_0)$. We suggest here an alternative interpretation of this result. By solving exactly the initial-value problem for a Rydberg atom in a microwave field we find that such a field does not provide any radial localization of a wave packet. On the other hand, it provides a rather efficient repopulation of the resonant Rydberg levels with high values of the angular momentum quantum number $l$. Migration of population to high-$l$ states is shown to cause a modulation of both angular and radial motion of a Rydberg electron. Such a periodical modulation of the electron motion is believed to provide a proper explanation of the experimental results by Maeda and Gallagher.
@article{UZKU_2006_148_1_a9,
     author = {P. A. Volkov and M. A. Efremov and M. V. Fedorov},
     title = {Formation dynamics of the radial-angular structure of the {Rydberg} wave-packet in a~resonant microwave field.},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {83--89},
     year = {2006},
     volume = {148},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a9/}
}
TY  - JOUR
AU  - P. A. Volkov
AU  - M. A. Efremov
AU  - M. V. Fedorov
TI  - Formation dynamics of the radial-angular structure of the Rydberg wave-packet in a resonant microwave field.
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 83
EP  - 89
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a9/
LA  - ru
ID  - UZKU_2006_148_1_a9
ER  - 
%0 Journal Article
%A P. A. Volkov
%A M. A. Efremov
%A M. V. Fedorov
%T Formation dynamics of the radial-angular structure of the Rydberg wave-packet in a resonant microwave field.
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 83-89
%V 148
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a9/
%G ru
%F UZKU_2006_148_1_a9
P. A. Volkov; M. A. Efremov; M. V. Fedorov. Formation dynamics of the radial-angular structure of the Rydberg wave-packet in a resonant microwave field.. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 1, pp. 83-89. http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a9/

[1] Schrödinger E., “The constant crossover of micro-to macro mechanics”, Naturwissenschaften, 14 (1926), 664–666 | DOI

[2] Bialynicki-Birula I., Kalinski M., Eberly J. H., “Lagrange equilibrium points in celestial mechanics and nonspreading wave packets for strongly driven Rydberg electrons”, Phys. Rev. Lett., 73 (1994), 1777–1780 | DOI

[3] Kalinski M. et al., “Rutherford atom in quantum theory”, Phys. Rev. A, 67 (2003), 032503-1–032503-5 | DOI

[4] Fedorov M. V., Fedorov S. M., “Stabilization and structure of wave packets in Rydberg atoms ionized by a strong light field”, Opt. Express, 3 (1998), 271–279 | DOI

[5] Chudesnikov D. O., Yakovlev V. P., “Bragg scattering on complex potentials and formation of supernarrow momentum distributions of atoms in light fields”, Laser Phys., 1:1 (1991), 110–119

[6] Oberthaler M. K. et al., “Atom waves in crystals of light”, Phys. Rev. Lett., 77 (1996), 4980–4983 | DOI

[7] Berry M. V., O'Dell D. H. J., “Diffraction by volume gratings with imaginary potentials”, J. Phys. A: Math. Gen., 31 (1998), 2093-2101 | DOI | Zbl

[8] Stutzle R. et al., “Observation of nonspreading wave packets in an imaginary potential”, Phys. Rev. Lett., 95 (2005), 110405-1–110405-4 | DOI

[9] Maeda H., Gallagher T. F., “Nondispersing wave packets”, Phys. Rev. Lett., 92 (2004), 133004-1–133004-4 | DOI

[10] Bureeva L. A., “O kvaziklassicheskom priblizhenii dlya sil ostsillyatorov i effektivnykh sechenii radiatsionnykh perekhodov”, Astronom. zhurn., 45 (1968), 1215–1221