Quantum-stohastic equation for radiation-balanced laser
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 1, pp. 170-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A quantum-mechanical description of quasi-two-level solid-state laser is presented. The impurity ion levels are coupled both by the phonons of the host lattice and by the radiation field. The set of dynamic Heisenberg–Langevin equations for the material system and the phonon operators has been derived. These equations include radiative and nonradiative damping terms and quantum-stohastic forces. This description could be used for investigation of the influence of phonon dynamics on a radiation-balanced laser stability.
@article{UZKU_2006_148_1_a21,
     author = {S. V. Petrushkin},
     title = {Quantum-stohastic equation for radiation-balanced laser},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {170--178},
     year = {2006},
     volume = {148},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a21/}
}
TY  - JOUR
AU  - S. V. Petrushkin
TI  - Quantum-stohastic equation for radiation-balanced laser
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2006
SP  - 170
EP  - 178
VL  - 148
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a21/
LA  - ru
ID  - UZKU_2006_148_1_a21
ER  - 
%0 Journal Article
%A S. V. Petrushkin
%T Quantum-stohastic equation for radiation-balanced laser
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2006
%P 170-178
%V 148
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a21/
%G ru
%F UZKU_2006_148_1_a21
S. V. Petrushkin. Quantum-stohastic equation for radiation-balanced laser. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, Tome 148 (2006) no. 1, pp. 170-178. http://geodesic.mathdoc.fr/item/UZKU_2006_148_1_a21/

[1] Bowman S. R., “Lasers without internal heat generation”, IEEE J. Quantum Electronics, QE-35 (1999), 115–122 | DOI

[2] Andrianov S. N., Samartsev V. V., “Solid-state lasers with internal laser refrigeration effect”, Proc. SPIE, 4605, 2001, 208–213 | DOI

[3] Petrushkin S. V., Shakhmuratov R. N., Samartsev V. V., “Self-cooling of the active element of a solid-state laser”, Laser Physics, 12 (2002), 1387–1390

[4] Petrushkin S. V., Samartsev V. V., “Laser cooling of active media in solid-state lasers”, Laser Physics, 13 (2003), 1290–1296

[5] Epstein R. I., Buchwald M. I., Edwards B. C. et al., “Observation of laser-induced flourescent cooling of a solid”, Nature, 377 (1995), 500–506 | DOI

[6] Payne S. A., Beach R. J., Bibeau C. et al., “Diode arrays, crystals, and thermal management for solid-state lasers”, IEEE J. Select Topics Quantum Electron., 3 (1997), 71–81 | DOI

[7] Brusselbach H. W., Sumida D. S., Reeder R. A., Byren R. W., “Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers”, IEEE J. Select Topics Quantum Electron., 3 (1997), 105–116 | DOI

[8] Petrushkin S. V., Samartsev V. V., Lazernoe okhlazhdenie tverdykh tel, Fizmatlit, M., 2005, 225 pp.